Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(8): 246, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030812

RESUMO

Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.


Assuntos
Nanofibras , Cicatrização , Pele , Polímeros , Bandagens
2.
Int J Pharm X ; 6: 100194, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37434966

RESUMO

Duloxetine hydrochloride (DUL) is a BCS class-II antidepressant drug, acting via serotonin and norepinephrine reuptake inhibition. Despite high oral absorption, DUL suffers limited bioavailability due to extensive gastric and first-pass metabolism. To improve DUL's bioavailability; DUL-loaded elastosomes were developed, via full factorial design, utilizing various span®60: cholesterol ratios, edge activator types and amounts. Entrapment efficiency (E.E.%), particle size (PS), zeta potential (ZP) and in-vitro released percentages after 0.5 h (Q0.5h) and 8 h (Q8h) were evaluated. Optimum elastosomes (DUL-E1) were assessed for morphology, deformability index, drug crystallinity and stability. DUL pharmacokinetics were evaluated in rats following intranasal and transdermal application of DUL-E1 elastosomal gel. DUL-E1 elastosomes [comprising span®60 and cholesterol (1:1) and brij S2 (edge activator; 5 mg)] were optimum with high E.E.% (81.5 ± 3.2%), small PS (432 ± 13.2 nm), ZP (-30.8 ± 3.3 mV), acceptable Q0.5h (15.6 ± 0.9%), and high Q8h (79.3 ± 3.8%). Intranasal and transdermal DUL-E1 elastosomes revealed significantly higher Cmax (251 ± 18.6 and 248 ± 15.9 ng/mL) at Tmax (2 and 4 h) and improved relative bioavailability (≈ 2.8 and 3.1 folds) respectively, in comparison to oral DUL aqueous solution. In-vivo histopathological studies were conducted to ensure the safety of DUL-E1. Elastosomes are promising novel nano-carriers, capable of enhancing the bioavailability of DUL via various routes of administration.

3.
Br J Clin Pharmacol ; 88(6): 2665-2672, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34983084

RESUMO

Chronic central serous chorioretinopathy (CSCR) is an ocular threatening disease, a common cause of central vision loss, affecting the posterior pole of the eye. Eplerenone (EPL) is a selective mineralocorticoid receptor antagonist that is primarily used to treat hypertension. Recently, it has shown many benefits in modifying the physio-pathological processes occurring upon stimulation of renin-angiotensin-aldosterone system at the ocular level. In CSCR treatment, several clinical studies and case reports prove the efficacy and safety of EPL. However, setbacks for such studies include a relatively small number of participants and short follow-up periods. This review article is intended to describe theories about the nature and classification of CSCR and recapitulate EPL therapeutic benefits as selective mineralocorticoid receptor antagonist in the treatment of CSCR. Furthermore, we survey the literature on clinical studies discussing the results of use of EPL in treatment of CSCR. In addition, EPL therapeutic formulations that have been developed are described, and future potential delivery systems will be suggested.


Assuntos
Coriorretinopatia Serosa Central , Antagonistas de Receptores de Mineralocorticoides , Coriorretinopatia Serosa Central/tratamento farmacológico , Doença Crônica , Eplerenona , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Nanomedicina , Espironolactona/uso terapêutico
4.
Int J Nanomedicine ; 16: 4985-5002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335024

RESUMO

BACKGROUND: Eplerenone (Epl) is a selective mineralocorticoid-receptor antagonist used for chronic central serous chorioretinopathy treatment. Our goal was to enhance the corneal performance of Epl-loaded nanostructured lipid carriers (NLCs) through surface modification using different coating polymers. METHODS: Epl-loaded modified NLCs (Epl-loaded MNLCs) were prepared by coating the surface of Epl-loaded NLCs using different polymers, namely hyaluronic acid, chitosan oligosaccharide lactate, and hydrogenated collagen. A 31×41 full factorial design was used to evaluate the effect of the surface modification on the properties of the prepared systems. Selected optimal Epl-loaded MNLCs were further evaluated for in vitro drug release, morphology, pH, rheological properties, corneal mucoadhesion, irritation, and penetration. RESULTS: Epl-loaded MNLCs were successfully prepared with high drug-entrapment efficiency and nanosized particles with low size distribution. Transmission electron microscopy revealed nanosized spherical particles surrounded by a coating layer of the surface modifier. The pH, refractive index, and viscosity results of the Epl-loaded MNLCs confirmed the ocular compatibility of the systems with no blurring of vision. The safety and ocular tolerance of the optimal MNLCs were confirmed using the hen's egg test on chorioallantoic membrane and by histopathological evaluation of rabbit eyes treated with the optimal systems. Confocal laser-scanning microscopy of corneal surfaces confirmed successful transcorneal permeation of the Epl-loaded MNLCs compared to the unmodified Epl-loaded NLCs, revealed by higher corneal fluorescence intensity at all time intervals. CONCLUSION: Overall, the results confirmed the potential of Epl-loaded MNLCs as a direct approach for Epl ocular delivery.


Assuntos
Nanoestruturas , Animais , Galinhas , Córnea , Portadores de Fármacos , Eplerenona , Feminino , Lipídeos , Tamanho da Partícula , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA