Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602012

RESUMO

Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.

2.
ACS Appl Mater Interfaces ; 16(13): 16522-16531, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529914

RESUMO

The concept of a molecular nanovalve is applied to a synthesized biocompatible hydrogen-bonded organic framework (HOF), termed RSS-140, to load, trap, and subsequently release an antioxidant on command. Specifically, we exploit the pore windows of RSS-140 (i.e., ß-CD cavities) to first load and trap the antioxidant, Trolox, within the internal pores of the HOF (Trolox⊂RSS-140) and, to prevent it from leaching, utilize supramolecular chemistry to complex azobenzene (Azo) with ß-CD (Trolox⊂Azo@RSS-140). The molecular nanovalve is fully realized upon exposing Trolox⊂Azo@RSS-140 to UV light with a specific wavelength, which induces Azo isomerization, Azo decomplexation from ß-CD, and subsequent release of Trolox from the pores of RSS-140. The biocompatibility and nontoxicity of Trolox⊂Azo@RSS-140, together with the absolute control over the nanovalve opening, were established to yield a system that safely and slowly releases Trolox for longer-lasting antioxidant efficacy. As the field of supramolecular chemistry is rich with similar systems and many such systems can be used as building blocks to construct HOFs or other extended framework materials, we envision the molecular nanovalve concept to be applied widely for controllably delivering molecular cargo for diverse applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123777, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128330

RESUMO

Human gallstones are the most common disorder in the biliary system, affecting up to 20 % of the adult population. The formation of gallstones is primarily due to the supersaturating of cholesterol in bile. In order to comprehend gallstone disease in detail, it is necessary to have accurate information about phase identification and molecular structure. Different types of gallstone samples were collected from the Middle East area after surgical operations including; cholesterol, pigment, and mixed gallstones. To estimate the basic information about the stone formation and the pathophysiology of cholelithiasis as well as to classify the collected human gallstones, attenuated total reflection Fourier transform Infrared spectrometry (ATR-FTIR) was used to analyze the different gallstone structures in the wavenumber range from 400 to 4000 cm-1. Calcium bilirubinate was specified by the bands at 1662 cm-1, 1626 cm-1, and 1572 cm-1, while cholesterol rings were designated by the bands at 1464, 1438, 1055, and 1022 cm-1. It can be assumed that all samples consist of mixed gallstones based on the doublets at 1375 cm-1 and 1365 cm-1. The levels of calcium bilirubin and various minerals varied among the analyzed samples, indicating the heterogeneity in their composition and suggesting potential implications for gallstone formation. Based on the quantitative phase analysis using synchrotron radiation X-ray diffraction (SR-XRD), two phases of anhydrous cholesterol as a major content and one phase of monohydrate cholesterols as trace content represent the main components of most of the gallstones. Additional phases of calcium carbonate in the form of calcite, vaterite, aragonite, and bilirubinate were also quantified. According to the outcomes of the FTIR and the SR-XRD measurements, there exists a statistical correlation between the different types of chemical constituents of the gallstones.


Assuntos
Cálculos Biliares , Adulto , Humanos , Cálculos Biliares/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Molecular , Difração de Raios X , Síncrotrons , Bilirrubina/análise , Colesterol/análise
4.
Proc Natl Acad Sci U S A ; 120(45): e2313134120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903263

RESUMO

Plants and animals that thrive in arid regions utilize the diurnal changes in environmental temperature and humidity to optimize their water budget by combining water-harvesting mechanisms and morphophysiological traits. The Athel tamarisk (Tamarix aphylla) is a halophytic desert shrub that survives in arid, hypersaline conditions by excreting concentrated solutions of ions as droplets on its surface that crystallize into salt crystals and fall off the branches. Here, we describe the crystallization on the surface of the plant and explore the effects of external conditions such as diurnal changes in humidity and temperature. The salt mixtures contain at least ten common minerals, with NaCl and CaSO4·2H2O being the major products, SiO2 and CaCO3 main sand contaminants, and Li2SO4, CaSO4, KCl, K2Ca(SO4)2·H2O, CaMg(CO3)2 and AlNaSi3O8 present in smaller amounts. In natural conditions, the hanging or sitting droplets remain firmly attached to the surface, with an average adhesion force of 275 ± 3.5 µN measured for pure water. Rather than using morphological features of the surface, the droplets adhere by chemical interactions, predominantly by hydrogen bonding. Increasing ion concentration slightly increases the contact angle on the hydrophobic cuticle, thereby lowering surface wettability. Small amounts of lithium sulfate and possibly other hygroscopic salts result in strong hygroscopicity and propensity for deliquescence of the salt mixture overnight. Within a broader context, this natural mechanism for humidity harvesting that uses environmentally benign salts as moisture adsorbents could provide a bioinspired approach that complements the currently available water collection or cloud-seeding technologies.

5.
Sci Rep ; 13(1): 16283, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770570

RESUMO

Pyrolysis in an inert atmosphere is a widely applied route to convert tannery wastes into reusable materials. In the present study, the Cr(III) conversion into the toxic hexavalent form in the pyrolyzed tannery waste referred to as KEU was investigated. Ageing experiments and leaching tests demonstrated that the Cr(III)-Cr(VI) inter-conversion occurs in the presence of air at ambient temperature, enhanced by wet environmental conditions. Microstructural analysis revealed that the Cr-primary mineral assemblage formed during pyrolysis (Cr-bearing srebrodolskite and Cr-magnetite spinel) destabilized upon spray water cooling in the last stage of the process. In the evolution from the higher to the lower temperature mineralogy, Cr is incorporated into newly formed CrOOH flakes which likely react in air forming extractable Cr(VI) species. This property transforms KEU from an inert waste to a hazardous material when exposed to ordinary ambient conditions.

6.
J Synchrotron Radiat ; 29(Pt 4): 1107-1113, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787578

RESUMO

XAFS/XRF is a general-purpose absorption spectroscopy beamline at the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Jordan. Herein, its optical layout is presented along with its powerful capabilities in collecting absorption and fluorescence spectra within a wide energy range (4.7-30 keV). The beamline is equipped with a conventional fixed-exit double-crystal monochromator that allows the collection of an X-ray absorption spectrum within a few minutes in step-by-step mode. An on-the-fly scanning mode will be implemented shortly where the acquisition time will be reduced to less than a minute per scan. The full automation of the beamline allows performing successive measurements under different conditions. The different experimental setups and special features available to users are reported. Examples of XRF and XAFS measurements are presented, showing the performance of the beamline under different standard conditions.


Assuntos
Eletrônica , Síncrotrons , Oriente Médio , Raios X
7.
Angew Chem Int Ed Engl ; 61(39): e202207467, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35765853

RESUMO

Three-membered rings (3-rings) are an important structural motif in zeolite chemistry, but their formation remains serendipitous in reticular chemistry when designing zeolitic imidazolate frameworks (ZIFs). Herein, we report a design principle for constructing four new ZIFs, termed ZIF-1001 to -1004, from tetrahedral ZnII centers (T), benzotriazolate (bTZ), and different functionalized benzimidazolates (RbIM) that adopt a new zeolite NPO-type topology built from 3-rings. Two factors were critical for this discovery: i) incorporating the bTZ linker within the structures formed 3-rings due to a ∠(T-bTZ-T) angle of 120-130° reminiscent of the ∠(Ge-O-Ge) angle (130°) observed in germanate zeolite-type structures having 3-rings; and ii) RbIM guided the coordination chemistry of bTZ to bind preferentially in an imidazolate-type mode. This series' ability to selectively capture CO2 from high-humidity flue gas and trap ethane from tail gas during shale gas extraction was demonstrated.

8.
J Synchrotron Radiat ; 29(Pt 2): 532-539, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254318

RESUMO

The Materials Science (MS) beamline at SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East), dedicated to the X-ray powder diffraction technique, started its operational phase in December 2020 by hosting its first users. The MS endstation comprises a two-circle diffractometer coupled with a PILATUS 300K area detector, with which direct beam images are collected and compared with the initial ray-tracing simulation results. We present a detailed description of the beamline components and the experimental characterization of the main instrumental parameters relying on the instrumental profile and the angular resolution. A representative example for microstructure investigations of a nanocrystalline material is demonstrated.

9.
J Synchrotron Radiat ; 23(2): 501-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917138

RESUMO

The correlation between the thermoluminescence (TL) response of nanocrystalline LiF and its microstructure was studied. To investigate the detailed TL mechanism, the glow curves of nanocrystalline LiF samples produced by high-energy ball-milling were analyzed. The microstructure of the prepared samples was analyzed by synchrotron X-ray powder diffraction (XRPD) at room temperature. Then, the microstructure of a representative pulverized sample was investigated in detail by performing in situ XRPD in both isothermal and non-isothermal modes. In the present study, the dislocations produced by ball-milling alter the microstructure of the lattice where the relative concentration of the vacancies, responsible for the TL response, changes with milling time. An enhancement in the TL response was recorded for nanocrystalline LiF at high-temperature traps (after dislocations recovery starts >425 K). It is also found that vacancies are playing a major role in the dislocations recovery mechanism. Moreover, the interactions among vacancies-dislocations and/or dislocations-dislocations weaken the TL response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA