Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Podiatr Med Assoc ; 108(1): 77-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29547026

RESUMO

A case of a repaired failed toe arthrodesis is presented. A novel and previously unreported approach using a percutaneously placed Kirschner wire coupled with a pulsed electromagnetic field achieved healing of a painful pseudoarthrosis at 54 days. With a percutaneous technique, open debridement of the failed arthrodesis site can be avoided.


Assuntos
Artrodese/efeitos adversos , Fios Ortopédicos , Síndrome do Dedo do Pé em Martelo/cirurgia , Magnetoterapia/métodos , Articulação do Dedo do Pé/cirurgia , Idoso , Feminino , Síndrome do Dedo do Pé em Martelo/diagnóstico , Humanos , Radiografia , Reoperação , Articulação do Dedo do Pé/diagnóstico por imagem , Falha de Tratamento
2.
Exp Mol Med ; 48(9): e257, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585719

RESUMO

Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.


Assuntos
Proteínas do Olho/metabolismo , Receptores de Hialuronatos/metabolismo , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/metabolismo , Osteoclastos/citologia , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Proteínas Recombinantes/metabolismo
3.
BMC Musculoskelet Disord ; 17: 34, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26781840

RESUMO

BACKGROUND: Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA's expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats. METHODS: Flexor digitorum muscles and tendons were collected from 22 young adult female rats performing a HRNF reaching task for 3 to 6 weeks, and 12 food restricted control (FRC) rats. OA mRNA levels were assessed by quantitative polymerase chain reaction (qPCR). OA, MMP-1, -2, -3, and -13 and HSP72 protein expression was assayed using Western blotting. Immunohistochemistry and image analysis was used to evaluate OA and HSP72 expression. ELISA was performed for HSP72 and inflammatory cytokines. RESULTS: Flexor digitorum muscles and tendons from 6-week HRNF rats showed increased OA mRNA and protein expression compared to FRC rats. MMP-1, -2 and -3 progressively increased in muscles whereas MMP-1 and -3 increased in tendons with HRNF task performance. HSP72 increased in 6-week HRNF muscles and tendons, compared to controls, and co-localized with OA in the myofiber sarcolemma. IL-1alpha and beta increased transiently in tendons or muscles in HRNF week 3 before resolving in week 6. CONCLUSION: The simultaneous increases of OA with factors involved in tissue repair (MMPs and HSP72) supports a role of OA in tissue regeneration after repetitive overuse.


Assuntos
Transtornos Traumáticos Cumulativos/metabolismo , Proteínas de Choque Térmico HSP72/biossíntese , Metaloproteinases da Matriz/biossíntese , Glicoproteínas de Membrana/biossíntese , Músculo Esquelético/metabolismo , Tendões/metabolismo , Animais , Transtornos Traumáticos Cumulativos/prevenção & controle , Modelos Animais de Doenças , Feminino , Força da Mão/fisiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley , Tendões/patologia
4.
J Cell Physiol ; 231(1): 72-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25899717

RESUMO

Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-ß1 and TGF-ß receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/metabolismo , Diferenciação Celular/fisiologia , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Animais , Densidade Óssea/fisiologia , Remodelação Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Osteogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
5.
J Biol Chem ; 290(33): 20128-46, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25837253

RESUMO

We previously reported on the importance of osteoactivin (OA/Gpnmb) in osteogenesis. In this study, we examined the role of OA in osteoclastogenesis, using mice with a nonsense mutation in the Gpnmb gene (D2J) and wild-type controls (D2J/Gpnmb(+)). In these D2J mice, micro-computed tomography and histomorphometric analyses revealed increased cortical thickness, whereas total porosity and eroded surface were significantly reduced in D2J mice compared with wild-type controls, and these results were corroborated by lower serum levels of CTX-1. Contrary to these observations and counterintuitively, temporal gene expression analyses supported up-regulated osteoclastogenesis in D2J mice and increased osteoclast differentiation rates ex vivo, marked by increased number and size. The finding that MAPK was activated in early differentiating and mature D2J osteoclasts and that survival of D2J osteoclasts was enhanced and mediated by activation of the AKT-GSK3ß pathway supports this observation. Furthermore, this was abrogated by the addition of recombinant OA to cultures, which restored osteoclastogenesis to wild-type levels. Moreover, mix and match co-cultures demonstrated an induction of osteoclastogenesis in D2J osteoblasts co-cultured with osteoclasts of D2J or wild-type. Last, in functional osteo-assays, we show that bone resorption activity of D2J osteoclasts is dramatically reduced, and these osteoclasts present an abnormal ruffled border over the bone surface. Collectively, these data support a model whereby OA/Gpnmb acts as a negative regulator of osteoclast differentiation and survival but not function by inhibiting the ERK/AKT signaling pathways.


Assuntos
Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Mutação , Osteoclastos/citologia , Ligante RANK/fisiologia , Animais , Remodelação Óssea , Camundongos , Camundongos Endogâmicos DBA , Ligante RANK/metabolismo , Transdução de Sinais , Microtomografia por Raio-X
6.
Life Sci ; 123: 25-34, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25510309

RESUMO

Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/fisiopatologia , Diferenciação Celular/fisiologia , Inflamação/fisiopatologia , Macrófagos/fisiologia , Modelos Biológicos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Animais , Células da Medula Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/imunologia , Transtornos Traumáticos Cumulativos/fisiopatologia , Humanos
7.
Biomed Res Int ; 2014: 670842, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25530967

RESUMO

A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.


Assuntos
Doenças Ósseas/epidemiologia , Osso e Ossos/fisiopatologia , Doenças Raras/epidemiologia , Doenças Ósseas/genética , Humanos , Osteogênese/genética , Doenças Raras/genética
8.
Expert Opin Ther Pat ; 24(8): 947-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962176

RESUMO

INTRODUCTION: Parkinson's disease (PD) is a neurodegenerative movement disorder resultant from the loss of dopaminergic neurons in the brain. There is an urgent need for effective biomarkers that can be used in the early diagnosis of PD. Mitochondrial dysfunction plays a significant role in PD pathology, which has led to the evaluation of mitophagy markers, PTEN-induced putative kinase 1 (PINK1), and PARKIN as possible biomarkers for the early diagnosis of PD. AREAS COVERED: The current patent describes the use of phosphorylation of PINK1 and PARKIN as a diagnostic measure. Specifically, Ser65 on PARKIN, which is phosphorylated by PINK1, and the autophosphorylation of PINK1 at Thr257 are described. EXPERT OPINION: This patent describes a much needed methodology that can easily be adapted in the clinical setting by which a biological sample, such as serum or cerebrospinal fluid, is collected and analyzed for the phosphorylation markers. Here, the phosphorylation activity seen in PINK1 and PARKIN can differentiate between age-matched controls and PD patients. This patent presents a novel diagnostic measure in early PD, as well as determines which medications would have a beneficial effect on a patient's disease progression.


Assuntos
Doença de Parkinson/diagnóstico , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Biomarcadores/metabolismo , Progressão da Doença , Neurônios Dopaminérgicos/patologia , Humanos , Mitocôndrias/patologia , Doença de Parkinson/fisiopatologia , Patentes como Assunto , Fosforilação
9.
J Cell Biochem ; 115(7): 1243-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24415158

RESUMO

Osteoactivin (OA), also known as glycoprotein nmb (gpnmb) plays an important role in the regulation of osteoblast differentiation and function. OA induced osteoblast differentiation and function in vitro by stimulating alkaline phosphatase (ALP) activity, osteocalcin production, nodule formation, and matrix mineralization. Recent studies reported a role for OA in cell adhesion and integrin binding. In this study, we demonstrate that recombinant osteoactivin (rOA) as a matricellular protein stimulated adhesion, spreading and differentiation of MC3T3-E1 osteoblast-like cells through binding to αv ß1 integrin and heparan sulfated proteoglycans (HSPGs). MC3T3-E1 cell adhesion to rOA was blocked by neutralizing anti-OA or anti-αv and ß1 integrin antibodies. rOA stimulated-osteoblast adhesion was also inhibited by soluble heparin and sodium chlorate. Interestingly, rOA stimulated-osteoblast adhesion promoted an increase in FAK and ERK activation, resulting in the formation of focal adhesions, cell spreading and enhanced actin cytoskeleton organization. In addition, differentiation of primary osteoblasts was augmented on rOA coated-wells marked by increased alkaline phosphatase staining and activity. Taken together, these data implicate OA as a matricellular protein that stimulates osteoblast adhesion through binding to αv ß1 integrin and cell surface HSPGs, resulting in increased cell spreading, actin reorganization, and osteoblast differentiation with emphasis on the positive role of OA in osteogenesis.


Assuntos
Proteínas do Olho/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoblastos/fisiologia , Receptores de Vitronectina/metabolismo , Células 3T3 , Citoesqueleto de Actina/fisiologia , Fosfatase Alcalina/biossíntese , Animais , Anticorpos/imunologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cloratos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Quinase 1 de Adesão Focal/biossíntese , Adesões Focais , Heparina/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Ligação Proteica , Ratos , Receptores de Vitronectina/imunologia , Proteínas Recombinantes
10.
Am J Pathol ; 184(3): 697-713, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24462663

RESUMO

We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb(+) mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb(+) osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-ß receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-ß signaling. These data confirm the anabolic role of OA in postnatal bone formation.


Assuntos
Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Osteoblastos/fisiologia , Osteocalcina/genética , Osteogênese/genética , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos DBA , Mutação , Osteoblastos/citologia , Fenótipo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
J Cell Physiol ; 229(7): 955-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24265122

RESUMO

Osteoactivin (OA) is a novel osteogenic factor important for osteoblast differentiation and function. Previous studies showed that OA stimulates matrix mineralization and transcription of osteoblast specific genes required for differentiation. OA plays a role in wound healing and its expression was shown to increase in post fracture calluses. OA expression was reported in muscle as OA is upregulated in cases of denervation and unloading stress. The regulatory mechanisms of OA in muscle and bone have not yet been determined. In this study, we examined whether OA plays a role in transdifferentiation of C2C12 myoblast into osteoblasts. Infected C2C12 with a retroviral vector overexpressing OA under the CMV promoter were able to transdifferentiate from myoblasts into osteoblasts. Immunofluorescence analysis showed that skeletal muscle marker MF-20 was severely downregulated in cells overexpressing OA and contained significantly less myotubes compared to uninfected control. C2C12 myoblasts overexpressing OA showed an increase in expression of bone specific markers such as alkaline phosphatase and alizarin red staining, and also showed an increase in Runx2 protein expression. We also detected increased levels of phosphorylated focal adhesion kinase (FAK) in C2C12 myoblasts overexpressing OA compared to control. Taken together, our results suggest that OA is able to induce transdifferentiation of myoblasts into osteoblasts through increasing levels of phosphorylated FAK.


Assuntos
Transdiferenciação Celular/genética , Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Mioblastos/metabolismo , Osteoblastos/metabolismo , Fosfatase Alcalina/biossíntese , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Proteínas do Olho/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Mioblastos/citologia , Osteoblastos/citologia
12.
PLoS One ; 7(5): e38359, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675458

RESUMO

BACKGROUND: This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis), collagen type I (Col1; a matrix component), and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen), in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. METHODOLOGY/RESULTS: To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF), or a high repetition high force handle-pulling task (HRHF), for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF) and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR) analyses of HRNF muscles showed increased expression of Col1 in weeks 3-9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4-6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. CONCLUSIONS/SIGNIFICANCE: Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were attenuated, at least short-term, by anti-inflammatory treatments.


Assuntos
Força da Mão , Músculo Esquelético/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Fibrose , Membro Anterior/efeitos dos fármacos , Membro Anterior/metabolismo , Membro Anterior/fisiopatologia , Ibuprofeno/farmacologia , Inflamação/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
13.
J Cell Biochem ; 111(2): 295-309, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506259

RESUMO

We previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post-fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively. Using a rat fracture model, Northern blot analysis showed that expression of OA mRNA was significantly higher in day-3 and day-10 PF calluses than in intact rat femurs. Using in situ hybridization, we examined OA mRNA expression during fracture healing and found that OA was temporally regulated, with positive signals seen as early as day-3 PF, reaching a maximal intensity at day-10 PF, and finally declining at day-21 PF. At day-5 PF, which correlates with chondrogenesis, OA mRNA levels were significantly higher in the soft callus than in intact femurs. Similarly, we detected high OA protein immunoexpression throughout the reparative phase of the hard callus compared to intact femurs. Interestingly, the secreted OA protein was also detected within the newly made cartilage matrix and osteoid tissue. Taken together, these results suggest the possibility that OA plays an important role in bone formation and serves as a positive regulator of fracture healing.


Assuntos
Proteínas do Olho/análise , Proteínas do Olho/genética , Fêmur/lesões , Consolidação da Fratura/genética , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Animais , Condrogênese/genética , Proteínas do Olho/biossíntese , Lâmina de Crescimento/metabolismo , Glicoproteínas de Membrana/biossíntese , Osteoblastos/metabolismo , RNA Mensageiro/análise , Ratos , Fatores de Tempo
14.
Exp Cell Res ; 314(13): 2334-51, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18555216

RESUMO

Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.


Assuntos
Diferenciação Celular/genética , Proteínas do Olho/fisiologia , Glicoproteínas de Membrana/fisiologia , Osteoblastos/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Glicosilação/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metabolismo/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Biológicos , Osteoblastos/metabolismo , Osteogênese/genética , Transporte Proteico , Ratos , Homologia de Sequência de Aminoácidos , Tretinoína/farmacologia
15.
J Orthop Res ; 26(10): 1320-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18464247

RESUMO

We investigated inflammation in rats performing a low repetition, negligible force (LRNF) or high repetition, negligible force (HRNF) task of reaching and retrieving food pellets at target rates of two or four reaches/min for 2 h/day, for 6-8 weeks. Serum was assayed for 11 cytokines and chemokines; forelimb tissues for four cytokines. Macrophages were counted in forelimb tissues of LRNF rats to add to results from our previous studies of HRNF rats. In HRNF rats, serum IL-1 alpha, IL-1 beta, TNFalpha, MIP2, MIP3a, and RANTES were elevated in weeks 6 and 8. In contrast, only MIP2 and MIP3a increased in serum of LRNF rats. In 8 week HRNF reach limb tissues, IL-1 alpha, IL-1beta, TNFalpha, and IL-10 increased in distal bones, IL-1 alpha and -beta in muscles, and TNFalpha in tendons. Only IL-10 increased in LRNF reach limb muscles in week 8. Serum IL-1 alpha and MIP2 correlated with macrophages in LRNF loose connective tissues, serum MIP3a and MIP2 correlated negatively with grip strength, while serum TNFalpha, MIP3a, and MIP2 correlated positively with total number of reaches. Thus, several tissue and circulating cytokines/chemokines increase in an exposure dependent manner following short-term performance of repetitive reaching tasks and correlate with macrophage infiltration and decreasing grip strength.


Assuntos
Quimiocinas/sangue , Transtornos Traumáticos Cumulativos/sangue , Músculo Esquelético/metabolismo , Tendões/metabolismo , Animais , Transtornos Traumáticos Cumulativos/patologia , Transtornos Traumáticos Cumulativos/fisiopatologia , Modelos Animais de Doenças , Feminino , Membro Anterior , Força da Mão/fisiologia , Macrófagos/patologia , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/fisiopatologia , Tendões/patologia
16.
Cancer Res ; 68(5): 1261-6, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316587

RESUMO

Approximately 30% of patients with renal cell carcinoma (RCC) develop bone metastasis, which is characterized by extensive osteolysis leading to severe bone pain and pathologic fracture. Although the mechanism of RCC-induced osteolysis is unknown, studies of bone metastasis have shown that tumor-induced changes in bone remodeling are likely mediated by alterations in the bone microenvironment. Here, we report the discovery of a novel osteoclast stimulatory factor secreted by RCC bone metastasis (RBM). Through microarray analysis, we found expression of the chemokine, macrophage inflammatory protein-1 delta (MIP-1 delta), to be increased in RBM versus patient-matched primary RCC tissues and confirmed this finding by quantitative reverse transcription-PCR (qRT-PCR) and ELISA (P < 0.05). Furthermore, MIP-1 delta expression in RBM tissues was significantly (P < 0.001) higher than in human bone marrow, suggesting a potential alteration of the bone microenvironment. The receptors for MIP-1 delta, CCR1 and CCR3, were expressed in both osteoclast precursors and mature, bone-resorbing osteoclasts as shown by qRT-PCR and Western analysis. In functional studies, MIP-1 delta stimulated chemotaxis of two osteoclast precursor cell types: murine bone marrow mononuclear cells (BM-MNC) and RAW 264.7 cells. Furthermore, MIP-1 delta treatment of murine calvaria caused increased bone resorption as determined by measurement of released calcium. Correspondingly, MIP-1 delta significantly enhanced osteoclast formation and activity in response to RANKL in both BM-MNC and RAW 264.7 cells. Taken together, these data suggest that MIP-1 delta expression is increased in RBM relative to RCC and bone marrow, and may promote RBM-induced osteolysis by stimulating the recruitment and differentiation of osteoclast precursors into mature osteoclasts.


Assuntos
Osso e Ossos/patologia , Carcinoma de Células Renais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Proteínas Inflamatórias de Macrófagos/fisiologia , Osteoclastos/metabolismo , Animais , Osso e Ossos/metabolismo , Carcinoma de Células Renais/patologia , Diferenciação Celular , Movimento Celular , Humanos , Neoplasias Renais/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Inflamatórias de Macrófagos/química , Camundongos , Metástase Neoplásica , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Cell Physiol ; 210(1): 26-37, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17034042

RESUMO

Our laboratory previously showed that osteoactivin (OA) is a novel, osteoblast-related glycoprotein that plays a role in osteoblast differentiation and function. The purpose of this study was to examine the regulation of OA expression by BMP-2 and the role OA plays as a downstream mediator of BMP-2 effects in osteoblast function. Using primary osteoblast cultures, we tested different doses of BMP-2 on the regulation of OA expression during osteoblast development. To test whether Smad-1 signaling is responsible for BMP-2 regulation of OA expression, osteoblast cultures were transfected with Smad1 siRNA, treated with 50 ng/ml of BMP-2 and analyzed by Western blot. BMP-2 treatment increased OA mRNA and protein expression in a dose-dependent manner and this upregulation was blocked in Smad1 siRNA transfected cultures. We next examined whether the role of OA as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Osteoblast cultures were transfected with OA antisense oligonucleotides and treated with 50 ng/ml of BMP-2. Cultures transfected with OA antisense oligonucleotides and treated with BMP-2 showed a reduction of OA expression associated with a significant reduction in early and late differentiation markers induced by BMP-2. Therefore, OA acts, at least in part, as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Our findings suggest that BMP-2 regulates OA expression through the Smad1 signaling pathway. Our data also emphasize that OA protein acts as a downstream mediator of BMP-2 effects on osteoblast differentiation and function.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Glicoproteínas de Membrana/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glicoproteínas de Membrana/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Proteína Smad1/genética , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Crit Rev Eukaryot Gene Expr ; 13(2-4): 265-75, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14696973

RESUMO

Osteoactivin (OA) is a novel protein identified by mRNA differential display using bone from osteopetrotic versus normal rats. Bioinformatic analysis showed that OA cDNA has an open reading frame of 1716 bp encoding a protein of 572 aa, the first 21 aa constitute a signal peptide. OA sequence analysis also demonstrated 13 putative N-glycosylation sites suggestive of a heavily glycosylated protein. In this study, we localized OA protein in primary osteoblast culture by immunofluorescent staining and Western blot analysis. Primary osteoblast cultures pass through three stages: proliferation from day 1 to 7, matrix formation from day 7 to 14, and matrix mineralization from day 14 to 21. OA protein was detected at all stages examined, with maximal expression at 3 weeks when osteoblasts are terminally differentiated. Using the Chariot transfection reagent as a vehicle to deliver anti-OA antibody into the cells, we demonstrated that anti-OA antibody significantly inhibited osteoblast differentiation markers, including alkaline phosphatase activity, nodule formation, osteocalcin production, and calcium deposition, without affecting cell proliferation or viability. These data suggest that OA is an osteoblast-related protein that plays an important role in the regulation of osteoblast differentiation and function.


Assuntos
Anticorpos/química , Osteoblastos/citologia , Proteínas/química , Fosfatase Alcalina/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Divisão Celular , Sobrevivência Celular , Células Cultivadas , Biologia Computacional , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Glicosilação , Glicoproteínas de Membrana , Microscopia de Fluorescência , Fases de Leitura Aberta , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Sinais Direcionadores de Proteínas , Proteínas/imunologia , RNA Mensageiro/metabolismo , Ratos , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA