Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Radiol ; 95(1129): 20210759, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889645

RESUMO

OBJECTIVE: To determine the diagnostic accuracy of a deep-learning (DL)-based algorithm using chest computed tomography (CT) scans for the rapid diagnosis of coronavirus disease 2019 (COVID-19), as compared to the reference standard reverse-transcription polymerase chain reaction (RT-PCR) test. METHODS: In this retrospective analysis, data of COVID-19 suspected patients who underwent RT-PCR and chest CT examination for the diagnosis of COVID-19 were assessed. By quantifying the affected area of the lung parenchyma, severity score was evaluated for each lobe of the lung with the DL-based algorithm. The diagnosis was based on the total lung severity score ranging from 0 to 25. The data were randomly split into a 40% training set and a 60% test set. Optimal cut-off value was determined using Youden-index method on the training cohort. RESULTS: A total of 1259 patients were enrolled in this study. The prevalence of RT-PCR positivity in the overall investigated period was 51.5%. As compared to RT-PCR, sensitivity, specificity, positive predictive value, negative predictive value and accuracy on the test cohort were 39.0%, 80.2%, 68.0%, 55.0% and 58.9%, respectively. Regarding the whole data set, when adding those with positive RT-PCR test at any time during hospital stay or "COVID-19 without virus detection", as final diagnosis to the true positive cases, specificity increased from 80.3% to 88.1% and the positive predictive value increased from 68.4% to 81.7%. CONCLUSION: DL-based CT severity score was found to have a good specificity and positive predictive value, as compared to RT-PCR. This standardized scoring system can aid rapid diagnosis and clinical decision making. ADVANCES IN KNOWLEDGE: DL-based CT severity score can detect COVID-19-related lung alterations even at early stages, when RT-PCR is not yet positive.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Adulto , Idoso , COVID-19/diagnóstico , COVID-19/patologia , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Radiografia Torácica , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
2.
Tomography ; 7(4): 697-710, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34842822

RESUMO

We sought to analyze the prognostic value of laboratory and clinical data, and an artificial intelligence (AI)-based algorithm for Coronavirus disease 2019 (COVID-19) severity scoring, on CT-scans of patients hospitalized with COVID-19. Moreover, we aimed to determine personalized probabilities of clinical deterioration. Data of symptomatic patients with COVID-19 who underwent chest-CT-examination at the time of hospital admission between April and November 2020 were analyzed. COVID-19 severity score was automatically quantified for each pulmonary lobe as the percentage of affected lung parenchyma with the AI-based algorithm. Clinical deterioration was defined as a composite of admission to the intensive care unit, need for invasive mechanical ventilation, use of vasopressors or in-hospital mortality. In total 326 consecutive patients were included in the analysis (mean age 66.7 ± 15.3 years, 52.1% male) of whom 85 (26.1%) experienced clinical deterioration. In the multivariable regression analysis prior myocardial infarction (OR = 2.81, 95% CI = 1.12-7.04, p = 0.027), immunodeficiency (OR = 2.08, 95% CI = 1.02-4.25, p = 0.043), C-reactive protein (OR = 1.73, 95% CI = 1.32-2.33, p < 0.001) and AI-based COVID-19 severity score (OR = 1.08; 95% CI = 1.02-1.15, p = 0.013) appeared to be independent predictors of clinical deterioration. Personalized probability values were determined. AI-based COVID-19 severity score assessed at hospital admission can provide additional information about the prognosis of COVID-19, possibly serving as a useful tool for individualized risk-stratification.


Assuntos
COVID-19 , Pneumonia , Idoso , Idoso de 80 Anos ou mais , Inteligência Artificial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA