Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(24): 10084-10107, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38919725

RESUMO

All-inorganic metal halide perovskite nanocrystals (PeNCs) show great potential for the next generation of perovskite light-emitting diodes (PeLEDs). However, trap-assisted recombination negatively impacts the optoelectronic properties of PeNCs and prevents their widespread adoption for commercial exploitation. To mitigate trap-assisted recombination and further enhance the external quantum efficiency of PeLEDs, A/B-site doping has been widely investigated to tune the bandgap of PeNCs. The bandgap of PeNCs is adjustable within a small range (no more than 0.1 eV) by A-site cation doping, resulting in changes in the bond length of Pb-X and the angle of [PbX6]4. Nevertheless, B-site doping of PeNCs has a more significant impact on the bandgap level through modification of surface defect states. In this perspective, we delve into the synthesis of PeNCs with A/B-site doping and their impacts on the structural and optoelectronic properties, as well as their impacts on the performance of subsequent PeLEDs. Furthermore, we explore the A-site and B-site doping mechanisms and the impact of device architecture on doped PeNCs to maximize the performance and stability of PeLEDs. This work presents a comprehensive overview of the studies on A-site and B-site doping in PeNCs and approaches to unlock their full potential in the next generation of LEDs.

2.
Adv Mater ; 36(31): e2404517, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38779825

RESUMO

Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.

3.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680545

RESUMO

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

4.
Sci Rep ; 12(1): 5367, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354864

RESUMO

This work utilizes a realistic electro-optical coupled simulation to study the (i) impact of mesoporous TiO2 removal; (ii) the embedding of Ag@SiO2 and SiO2@Ag@SiO2 plasmonic nanoparticles; (iii) utilization of solution-processed inorganic p-type copper(I) thiocyanate (CuSCN) layer at the perovskite/carbon interface; and (iv) the increase of the work function of carbon electrodes (via incorporation of suitable additives/binders to the carbon ink) on the performance of carbon-based PSCs. Removal of mesoporous TiO2 increased the power conversion efficiency (PCE) of the device from 14.83 to 16.50% due to the increase in exciton generation rate and charge carriers' mobility in the vicinity of the perovskite-compact TiO2 interface. Subsequently, variable mass ratios of Ag@SiO2 and SiO2@Ag@SiO2 plasmonic nanoparticles are embedded in the vicinity of the perovskite-compact TiO2 interface. In the optimum cases, the PCE of the devices increased to 19.72% and 18.92%, respectively, due to light trapping, scattering, and strong plasmonic fields produced by the plasmonic nanoparticles. Furthermore, adding the CuSCN layer remarkably increased the PCE of the device with a 0.93% mass ratio of Ag@SiO2 nanoparticles from 19.72 to 26.58% by a significant improvement of Voc and FF, due to the proper interfacial energy band alignment and the reduction of the recombination current density. Similar results were obtained by increasing the carbon work function, and the cell PCE was enhanced up to 26% in the optimal scenario. Our results pave the way to achieve high efficiencies in remarkably stable printable carbon-based PSCs.

5.
Sci Rep ; 11(1): 19774, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611202

RESUMO

The solution processable polymer solar cells have shown a great promise as a cost-effective photovoltaic technology. Here, the effect of carrier mobility changes has been comprehensively investigated on the performance of P3HT:PCBM polymer solar cells using electro-optical coupled simulation regimes, which may result from the embedding of SiO2@Ag@SiO2 plasmonic nanoparticles (NPs) in the active layer. Firstly, the active layer thickness, stemmed from the low mobility of the charge carriers, is optimized. The device with 80 nm thick active layer provided maximum power conversion efficiency (PCE) of 3.47%. Subsequently, the PCE has increased to 6.75% and 6.5%, respectively, along with the benefit of light scattering, near-fields and interparticle hotspots produced by embedded spherical and cubic nanoparticles. The PCE of the devices with incorporated plasmonic nanoparticles are remarkably enhanced up to 7.61% (for spherical NPs) and 7.35% (for cubic NPs) owing to the increase of the electron and hole mobilities to [Formula: see text] and [Formula: see text], respectively (in the optimum case). Furthermore, SiO2@Ag@SiO2 NPs have been successfully synthesized by introducing and utilizing a simple and eco-friendly approach based on electroless pre-treatment deposition and Stober methods. Our findings represent a new facile approach in the fabrication of novel plasmonic NPs for efficient polymer solar cells.

6.
Adv Mater ; 33(45): e2103640, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34558117

RESUMO

Metal halide perovskite semiconductors have demonstrated remarkable potentials in solution-processed blue light-emitting diodes (LEDs). However, the unsatisfied efficiency and spectral stability responsible for trap-mediated non-radiative losses and halide phase segregation remain the primary unsolved challenges for blue perovskite LEDs. In this study, it is reported that a fluorene-based π-conjugated cationic polymer can be blended with the perovskite semiconductor to control film formation and optoelectronic properties. As a result, sky-blue and true-blue perovskite LEDs with Commission Internationale de l'Eclairage coordinates of (0.08, 0.22) and (0.12, 0.13) at the record external quantum efficiencies of 11.2% and 8.0% were achieved. In addition, the mixed halide perovskites with the conjugated cationic polymer exhibit excellent spectral stability under external bias. This result illustrates that π-conjugated cationic polymers have a great potential to realize efficient blue mixed-halide perovskite LEDs with stable electroluminescence.

7.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910909

RESUMO

We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.

8.
J Am Chem Soc ; 143(10): 3983-3992, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684283

RESUMO

Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm-1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V-1 s-1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.

9.
ACS Energy Lett ; 6(2): 612-620, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614966

RESUMO

Perovskite-based tandem solar cells are of increasing interest as they approach commercialization. Here we use experimental parameters from optical spectroscopy measurements to calculate the limiting efficiency of perovskite-silicon and all-perovskite two-terminal tandems, employing currently available bandgap materials, as 42.0% and 40.8%, respectively. We show luminescence coupling between subcells (the optical transfer of photons from the high-bandgap to low-bandgap subcell) relaxes current matching when the high-bandgap subcell is a luminescent perovskite. We calculate that luminescence coupling becomes important at charge trapping rates (≤106 s-1) already being achieved in relevant halide perovskites. Luminescence coupling increases flexibility in subcell thicknesses and tolerance to different spectral conditions. For maximal benefit, the high-bandgap subcell should have the higher short-circuit current under average spectral conditions. This can be achieved by reducing the bandgap of the high-bandgap subcell, allowing wider, unstable bandgap compositions to be avoided. Lastly, we visualize luminescence coupling in an all-perovskite tandem through cross-section luminescence imaging.

10.
J Phys Chem Lett ; 11(23): 10188-10195, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205977

RESUMO

Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.

11.
Nature ; 587(7835): 594-599, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239799

RESUMO

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

12.
ACS Nano ; 14(11): 15552-15565, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166124

RESUMO

Understanding the charge transport mechanisms in chirality-selected single-walled carbon nanotube (SWCNT) networks and the influence of network parameters is essential for further advances of their optoelectronic and thermoelectric applications. Here, we report on charge density and temperature-dependent field-effect mobility and on-chip field-effect-modulated Seebeck coefficient measurements of polymer-sorted monochiral small-diameter (6,5) (0.76 nm) and mixed large-diameter SWCNT (1.17-1.55 nm) networks (plasma torch nanotubes, RN) with different network densities and length distributions. All untreated networks display balanced ambipolar transport and electron-hole symmetric Seebeck coefficients. We show that charge and thermoelectric transport in SWCNT networks can be modeled by the Boltzmann transport formalism, incorporating transport in heterogeneous media and fluctuation-induced tunneling. Considering the diameter-dependent one-dimensional density of states (DoS) of the SWCNTs composing the network, we can simulate the charge density and temperature-dependent Seebeck coefficients. Our simulations suggest that scattering in these networks cannot be described as simple one-dimensional acoustic and optical phonon scattering as for single SWCNTs. Instead the relaxation time is inversely proportional to energy (τ ∝ (E - EC)s, s = -1, EC being the energy of the first van Hove singularity), presumably pointing toward the more two-dimensional character of scattering events and the necessity to include scattering at the SWCNT junctions. Finally, our observation of higher power factors in trap-free, 1,2,4,5-tetrakis(tetramethylguanidino)benzene-treated (6,5) networks than in the RN networks emphasizes the importance of chirality selection to tune the width of the DoS. To benefit from both higher intrinsic mobilities and a large thermally accessible DoS, we propose trap-free, narrow DoS distribution, large-diameter SWCNT networks for both electronic and thermoelectric applications.

14.
Sci Adv ; 6(15): eaaz4948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300658

RESUMO

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.

15.
Nature ; 580(7803): 360-366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296189

RESUMO

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

16.
Adv Mater ; 32(17): e2000080, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32163652

RESUMO

Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.

17.
ACS Energy Lett ; 4(10): 2360-2367, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31633033

RESUMO

The highest reported efficiencies of metal halide perovskite (MHP) solar cells are all based on mixed perovskites, such as (FA,MA,Cs)Pb(I1-x Br x )3. Despite demonstrated structural changes induced by light soaking, it is unclear how the charge carrier dynamics are affected across this entire material family. Here, various (FA,MA,Cs)Pb(I1-x Br x )3 perovskite films are light-soaked in nitrogen, and changes in optoelectronic properties are investigated through time-resolved microwave conductivity (TRMC) and optical and structural techniques. To fit the TRMC decay kinetics obtained for pristine (FA,MA,Cs)Pb(I1-x Br x )3 for various excitation densities, additional shallow states have to be included, which are not required for describing TRMC traces of single-cation MHPs. These shallow states can, independently of x, be removed by light soaking, which leads to a reduction in the imbalance between the diffusional motion of electrons and holes. We interpret the shallow states as a result of initially well-intermixed halide distributions, which upon light soaking segregate into domains with distinct band gaps.

18.
Adv Mater ; 31(42): e1902374, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31489713

RESUMO

Mixed-halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution-processed triple-cation mixed-halide (Cs0.06 MA0.15 FA0.79 )Pb(Br0.4 I0.6 )3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar-equivalent illumination. It is found that the illumination leads to localized surface sites of iodide-rich perovskite intermixed with passivating PbI2 material. Time- and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide-rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed-halide mixed-cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.

19.
Sci Adv ; 5(2): eaav2012, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30793032

RESUMO

One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.

20.
ACS Nano ; 12(7): 7301-7311, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29953817

RESUMO

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA