Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(47): 18846-18855, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37276343

RESUMO

Chlorine dioxide (ClO2) is an oxidant applied in water treatment processes that is very effective for disinfection and abatement of inorganic and organic pollutants. Thereby phenol is the most important reaction partner of ClO2 in reactions of natural organic matter (NOM) and in pollutant degradation. It was previously reported that with specific reaction partners (e.g., phenol), free available chlorine (FAC) could form as another byproduct next to chlorite (ClO2-). This study investigates the impact of different functional groups attached to the aromatic ring of phenol on the formation of inorganic byproducts (i.e., FAC, ClO2-, chloride, and chlorate) and the overall reaction mechanism. The majority of the investigated compounds reacted with a 2:1 stoichiometry and formed 50% ClO2- and 50% FAC, regardless of the position and kind of the groups attached to the aromatic ring. The only functional groups strongly influencing the FAC formation in the ClO2 reaction with phenols were hydroxyl- and amino-substituents in ortho- and para-positions, causing 100% ClO2- and 0% FAC formation. Additionally, this class of compounds showed a pH-dependent stoichiometric ratio due to pH-dependent autoxidation. Overall, FAC is an important secondary oxidant in ClO2 based treatment processes. Synergetic effects in pollutant control and disinfection might be observable; however, the formation of halogenated byproducts needs to be considered as well.


Assuntos
Compostos Clorados , Desinfetantes , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro , Fenol , Óxidos , Desinfecção , Fenóis , Oxidantes , Poluentes Químicos da Água/análise
2.
Water Res ; 231: 119626, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709565

RESUMO

Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.


Assuntos
Desinfetantes , Água Potável , Ozônio , Purificação da Água , Desinfecção , Oxidantes/química , Ozônio/química , Bactérias , Cloro/química
3.
Environ Sci Technol ; 56(16): 11589-11601, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35929822

RESUMO

Chlorine dioxide (ClO2) is a very selective oxidant that reacts with electron-rich moieties such as activated amines and thus can degrade specific N-containing micropollutants. N-containing heterocycles (NCHs) are among the most frequent moieties of pharmaceuticals. In this study, the reactions of ClO2 with ritalinic acid and cetirizine, two abundant micropollutants, and model compounds representing their NCH moiety were investigated. The pH-dependent apparent reaction rates of all NCHs with ClO2 were measured and modeled. This model showed that neutral amines are the most important species having reaction rates between 800 and 3200 M-1 s-1, while cationic amines are not reactive. Ritalinic acid, cetirizine, and their representative model compounds showed a high stoichiometric ratio of ≈5 moles ClO2 consumption per degraded ritalinic acid and ≈4 moles ClO2 consumption per degraded cetirizine, respectively. Investigation of chlorine-containing byproducts of ClO2 showed that all investigated NCHs mostly react by electron transfer and form above 80% chlorite. The reactions of the model compounds were well comparable with cetirizine and ritalinic acid, indicating that the model compounds indeed represented the reaction centers of cetirizine and ritalinic acid. Using the calculated apparent reaction rate constants, micropollutant degradation during ClO2 treatment of surface water was predicted for ritalinic acid and cetirizine with -8 to -15% and 13 to -22% error, respectively. The results indicate that in ClO2-based treatment, piperidine-containing micropollutants such as ritalinic acid can be considered not degradable, while piperazine-containing compounds such as cetirizine can be moderately degraded. This shows that NCH model compounds could be used to predict micropollutant degradation.


Assuntos
Compostos Clorados , Purificação da Água , Aminas , Cetirizina , Cloro , Desinfecção , Nitrogênio , Óxidos , Água
4.
Anal Bioanal Chem ; 412(28): 7713-7722, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32944811

RESUMO

Free available chlorine (FAC) is the most widely used chemical for disinfection and in secondary disinfection; a minimum chlorine residual must be present in the distribution system. FAC can also be formed as an impurity in ClO2 production as well as a secondary oxidant in the ClO2 application, which has to be monitored. In this study, a new method is developed based on the reaction of FAC with glycine in which the amine group selectively scavenges FAC and the N-chloroglycine formed can be measured by ion chromatography with conductivity detector (IC-CD). Utilizing IC for N-chloroglycine measurement allows this method to be incorporated into routine monitoring of drinking water anions. For improving the sensitivity, IC was coupled with post-column reaction and UV detection (IC-PCR-UV), which was based on iodide oxidation by N-chloroglycine resulting in triiodide. The method performance was quantified by comparison of the results with the N,N-diethyl-p-phenylenediamine (DPD) method due to the unavailability of an N-chloroglycine standard. The N-chloroglycine method showed limits of quantification (LOQ) of 24 µg L-1 Cl2 and 13 µg L-1 Cl2 for IC-CD and IC-PCR-UV, respectively. These values were lower than those of DPD achieved in this research and in ultrapure water. Measurement of FAC in the drinking water matrix showed comparable robustness and sensitivity with statistically equivalent concentration that translated to recoveries of 102% for IC-CD and 105% for IC-PCR-UV. Repeatability and reproducibility performance were enhanced in the order of DPD, IC-CD, and IC-PCR-UV. Measurement of intrinsic FAC in the ClO2 application revealed that the N-chloroglycine method performed considerably better in such a system where different oxidant species (ClO2, FAC, chlorite, etc.) were present.


Assuntos
Cloro/análise , Cromatografia Líquida/métodos , Glicina/química , Desinfecção/métodos , Condutividade Elétrica , Limite de Detecção , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta/métodos , Poluentes Químicos da Água/análise
5.
Anal Bioanal Chem ; 412(20): 4921-4930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32458017

RESUMO

N-containing heterocycles (NCHs) are largely used as precursors for pharmaceuticals and can enter the environment. Some NCHs have been shown to be toxic, persistent, and very mobile in the environment. Thus, they have received increasing attention in the past years. However, the analysis of these polar compounds in environmental samples is still a challenge for liquid chromatography. This paper investigates the use of mixed-mode liquid chromatography (MMLC), which has reversed-phase and ion exchange characteristics for measurements of NCHs in water. NCHs with low pKa (i.e., < 2.5) display mainly reversed-phase interactions (neutral species) with the stationary phase and those with higher pKa (i.e., > 5) interact by a mixture of reversed-phase/ion exchange/HILIC mechanism. It was also shown that the presented method performs well in the quantification of the majority of the selected NCHs in surface water with MDLs between 3 and 6 µg/L, a low matrix effect and recoveries in the range of 77-96% except for pyridazine exhibiting 32% were achieved. The method was successfully employed to follow the degradation of NCHs in ozonation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA