Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874324

RESUMO

Dendritic cells (DCs) are known as antigen-presenting cells that are capable of regulating immune responses. DCs and T cells can interact mutually to induce antigen-specific T-cell responses. Cabergoline, which is a dopamine (DA) receptor agonist, seems to implement anti-inflammatory properties in the immune system, and therefore in the present study the impact of a DA receptor agonist cabergoline on the monocyte-derived DCs (moDCs) was assessed. Immature moDCs were treated with lipopolysaccharide to produce mature DCs (mDCs). The expression of DCs' related surface markers namely: CD11c, HLA-DR, and CD86 was measured by utilizing of flow cytometry. Real-time PCR was the technique of choice to determine the levels at which diverse inflammatory and anti-inflammatory factors in cabergoline-treated and control mDC groups were expressed. DCs treated with cabergoline displayed a significant decrease in CD86 and HLA-DR expression, markers linked to maturation and antigen presentation, respectively. In addition, the cabergoline-mDC group showed a considerable decline in terms of the levels at which IL-10, TGF-ß, and IDO genes were expressed, and an increase in the expression of TNF-α and IL-12 in comparison to the mDC control group. Our findings revealed that cabergoline as an immunomodulatory agent can relatively shift DCs into an immunogenic state, and there is a requirement for further investigations to evaluate the effects of cabergoline-treated DCs on the T cell responses in vitro, and also in various diseases including cancer in animal models.


Assuntos
Cabergolina , Células Dendríticas , Agonistas de Dopamina , Monócitos , Humanos , Cabergolina/farmacologia , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Agonistas de Dopamina/farmacologia , Lipopolissacarídeos/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Fenótipo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 7891-7903, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748228

RESUMO

Gastric cancer, as the fifth most frequent disease and the fourth foremost cause of cancer-related death worldwide, remains a main clinical challenge due to its poor prognosis, limited treatment choices, and ability to metastasize. Combining siRNAs to suppress lncRNA with chemotherapeutic medications is a novel treatment approach that eventually increases the therapeutic efficacy of the drug while lessening its adverse effects. This study was performed with the purpose of examining the impact of inhibiting DLGAP1-AS2 expression on gastric cancer cells' drug chemosensitivity. AGS cells were cultured as the study cell line and were transfected with an optimum dose of DLGAP1-AS2 siRNA and then treated with oxaliplatin. Cell viability was examined using the MTT technique. Apoptosis and cell cycle were evaluated using Annexin V/PI staining and flow cytometry. Later, the scratch test was conducted to investigate the ability of cells to migrate, and the inhibition of the stemness of AGS cells was further investigated through the colony formation method. Finally, the qRT-PCR technique was used to assess the expression of Bax, Bcl-2, Caspase-3, p53, MMP-2, and CD44 genes. The MTT test indicated the effect of gene therapy with siRNA and oxaliplatin in combination reduced the chemotherapy drug dose to 29.92 µM and increased AGS cells' sensitivity to oxaliplatin. Also, the combination therapy caused a significant increase in apoptosis. However, it reduced the stemness feature, the rate of cell viability, proliferation, and metastasis compared to the effect of each treatment alone; the results also showed the arrest of the cell cycle in the Sub G1 phase after the combined treatment and a further reduction in the number and size of the formed colonies. Suppressing the expression of lncRNA DLGAP1-AS2 by siRNA followed by treatment with oxaliplatin can be utilized as an effective and new therapeutic technique for gastric cancer therapy.


Assuntos
Antineoplásicos , Apoptose , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Oxaliplatina , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Oxaliplatina/farmacologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA