Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769942

RESUMO

The purpose of this paper is to determine the best dimple core design for metal sandwich panels by investigating the various critical criteria and core design parameters using the fuzzy-hybrid multi-criteria decision-making tool. The structural integrity of a sandwich panel depends on the core design and significantly affects the bonding strength. The continuous design and testing of a sandwich panel is a very lengthy process that increases the design time. The simulation analysis output was segregated into nine critical failure criteria. All the critical criteria weightages were evaluated using the Fuzzy-Analytical Hierarchical Process, while the Fuzzy-Technique for Order Preference by Similarity to Ideal Solution was used to evaluate the Closeness Coefficient value to determine the best core design configuration. The results indicate that the core configuration with a diameter of 6.0 mm and a depth of 3.0 mm obtained the highest closeness coefficient values, 0.9937 and 0.9294, under cyclic loading conditions of 50% and 70%. It was shown that using average sizes in the dimple configuration tends to provide better delamination resistance and structural integrity. This study contributes to the selection of the optimum core design configuration based on the various design criteria and using non-complex and competent analysis.

2.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235916

RESUMO

Epoxy nano composites containing micro and nano silica were prepared by varying the filler's weight loading as an attempt to investigate the effects of incorporating these fillers in influencing its mechanical properties. Mechanical properties characterizations include the evaluation of tensile. The mechanical properties of the epoxy composites were found to tremendously increase as both micro and nano silica were added together at a 1:1 wt.% ratio. For example, the highest values of Young's modulus were recorded to be 5.39 GPa for 25 wt.% loading (12.5 wt.% Micro + 12.5 wt.% nano), while Young's modulus values of 5.22 MPa and 5.32 MPa were recorded for micro and nano silica, respectively, at the same weight loading. The most outstanding results were observed at 25 wt.% hybrids (12.5 wt.% micro silica + 12.5 wt.% nano silica), where the values of Young's modulus were increased by 228% compared to the neat epoxy. This study successfully demonstrated synergistic effects demonstrated by combining micro and nano silica fillers, which created an interaction that significantly enhanced the Young's modulus of epoxy composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA