Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect ; 82(6): 253-259, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774019

RESUMO

BACKGROUND: Human to human transmission of SARS-CoV-2 is driven by the respiratory route but little is known about the pattern and quantity of virus output from exhaled breath. We have previously shown that face-mask sampling (FMS) can detect exhaled tubercle bacilli and have adapted its use to quantify exhaled SARS-CoV-2 RNA in patients admitted to hospital with Coronavirus Disease-2019 (COVID-19). METHODS: Between May and December 2020, we took two concomitant FMS and nasopharyngeal samples (NPS) over two days, starting within 24 h of a routine virus positive NPS in patients hospitalised with COVID-19, at University Hospitals of Leicester NHS Trust, UK. Participants were asked to wear a modified duckbilled facemask for 30 min, followed by a nasopharyngeal swab. Demographic, clinical, and radiological data, as well as International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) mortality and deterioration scores were obtained. Exposed masks were processed by removal, dissolution and analysis of sampling matrix strips fixed within the mask by RT-qPCR. Viral genome copy numbers were determined and results classified as Negative; Low: ≤999 copies; Medium: 1000-99,999 copies and High ≥ 100,000 copies per strip for FMS or per 100 µl for NPS. RESULTS: 102 FMS and NPS were collected from 66 routinely positive patients; median age: 61 (IQR 49 - 77), of which FMS was positive in 38% of individuals and concomitant NPS was positive in 50%. Positive FMS viral loads varied over five orders of magnitude (<10-3.3 x 106 genome copies/strip); 21 (32%) patients were asymptomatic at the time of sampling. High FMS viral load was associated with respiratory symptoms at time of sampling and shorter interval between sampling and symptom onset (FMS High: median (IQR) 2 days (2-3) vs FMS Negative: 7 days (7-10), p = 0.002). On multivariable linear regression analysis, higher FMS viral loads were associated with higher ISARIC mortality (Medium FMS vs Negative FMS gave an adjusted coefficient of 15.7, 95% CI 3.7-27.7, p = 0.01) and deterioration scores (High FMS vs Negative FMS gave an adjusted coefficient of 37.6, 95% CI 14.0 to 61.3, p = 0.002), while NPS viral loads showed no significant association. CONCLUSION: We demonstrate a simple and effective method for detecting and quantifying exhaled SARS-CoV-2 in hospitalised patients with COVID-19. Higher FMS viral loads were more likely to be associated with developing severe disease compared to NPS viral loads. Similar to NPS, FMS viral load was highest in early disease and in those with active respiratory symptoms, highlighting the potential role of FMS in understanding infectivity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Máscaras , Pessoa de Meia-Idade , RNA Viral , Carga Viral
2.
Microbiol Res ; 241: 126587, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32927205

RESUMO

Novel sampling matrices were manufactured using 3D printing for the detection of respiratory pathogens in expired air. A specific configuration of the matrices was designed using Computer-Aided Design software. Polyvinyl alcohol (PVA) was printed using fused deposition modelling to create a multilayer matrix to enhance the capture of bacteria. The performance of these matrices was compared with gelatine filters that have been used for this work to date. PVA matrices (60 mm diameter) were contaminated with bacteria either by direct inoculation, or by aerosol exposure using an Omron A3 nebuliser. Rough and smooth morphotypes of Mycobacterium abscessus, M. smegmatis and M. bovis BCG, were used in this study to contaminate the matrices. PVA matrices and gelatine sampling filters were contaminated to compare recovery rates for quantitative analyses. These were dissolved in water, bacteria pelleted and DNA extracted followed by a Mycobacterium-specific quantitative Polymerase Chain Reaction (qPCR).The results showed that 3D printed PVA matrices are very effective to capture the bacteria. 3D printed PVA matrix and gelatine filters yielded results of the same order of magnitude for mycobacterial analyses, however, PVA matrix offers several advantages over the latter material. 3D printed PVA is considered as an economic and time-effective matrix as it is cheaper than gelatine filters. PVA is sufficiently robust to be handled and loaded into the surgical masks for sampling, compared to the brittle gelatine filters that required supportive frames. PVA is a synthetic material and it is suitable for DNA-based analyses, whilst gelatine is derived from animal collagen, and carries a high bacterial DNA background that interferes with the target DNA analysis. Furthermore, PVA dissolves in distilled water without requiring chemicals or enzymes, such as the case for gelatine hydrolysis. To summarise, 3D printed PVA sampling matrix is considered a promising tool used for microbiological diagnostic purposes.


Assuntos
Filtração/métodos , Mycobacterium abscessus/isolamento & purificação , Mycobacterium bovis/isolamento & purificação , Mycobacterium smegmatis/isolamento & purificação , Material Particulado/análise , Infecções Respiratórias/microbiologia , Gelatina , Humanos , Máscaras/microbiologia , Álcool de Polivinil , Impressão Tridimensional , Reação em Cadeia da Polimerase em Tempo Real
3.
Lancet Infect Dis ; 20(5): 607-617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32085847

RESUMO

BACKGROUND: Tuberculosis remains a global health challenge, with early diagnosis key to its reduction. Face-mask sampling detects exhaled Mycobacterium tuberculosis. We aimed to investigate bacillary output from patients with pulmonary tuberculosis and to assess the potential of face-mask sampling as a diagnostic method in active case-finding. METHODS: We did a 24-h longitudinal study in patients from three hospitals in Pretoria, South Africa, with microbiologically confirmed pulmonary tuberculosis. Patients underwent 1 h of face-mask sampling eight times over a 24-h period, with contemporaneous sputum sampling. M tuberculosis was detected by quantitative PCR. We also did an active case-finding pilot study in inhabitants of an informal settlement near Pretoria. We enrolled individuals with symptoms of tuberculosis on the WHO screening questionnaire. Participants provided sputum and face-mask samples that were tested with the molecular assay Xpert MTB/RIF Ultra. Sputum-negative and face-mask-positive individuals were followed up prospectively for 20 weeks by bronchoscopy, PET-CT, and further sputum analysis to validate the diagnosis. FINDINGS: Between Sept 22, 2015, and Dec 3, 2015, 78 patients with pulmonary tuberculosis were screened for the longitudinal study, of whom 24 completed the study (20 had HIV co-infection). M tuberculosis was detected in 166 (86%) of 192 face-mask samples and 38 (21%) of 184 assessable sputum samples obtained over a 24-h period. Exhaled M tuberculosis output showed no diurnal pattern and did not associate with cough frequency, sputum bacillary content, or chest radiographic disease severity. On May 16, 2018, 45 individuals were screened for the prospective active case-finding pilot study, of whom 20 had tuberculosis symptoms and were willing to take part. Eight participants were diagnosed prospectively with pulmonary tuberculosis, of whom six were exclusively face-mask positive at screening. Four of these participants (three of whom were HIV-positive) had normal findings on chest radiography but had treatment-responsive early tuberculosis-compatible lesions on PET-CT scans, with Xpert-positive sputum samples after 6 weeks. INTERPRETATION: Face-mask sampling offers a highly efficient and non-invasive method for detecting exhaled M tuberculosis, informing the presence of active infection both with greater consistency and at an earlier disease stage than with sputum samples. The approach shows potential for diagnosis and screening, particularly in difficult-to-reach communities. FUNDING: Wellcome Trust, CARA (Council for At-Risk Academics), University of Leicester, the UK Medical Research Council, and the National Institute for Health Research. VIDEO ABSTRACT.


Assuntos
Máscaras/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Adulto , Coinfecção/diagnóstico , Coinfecção/microbiologia , Coinfecção/virologia , Testes Diagnósticos de Rotina/métodos , Feminino , Infecções por HIV/microbiologia , Infecções por HIV/virologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , África do Sul , Escarro/microbiologia , Escarro/virologia , Adulto Jovem
4.
BMJ Open Respir Res ; 5(1): e000321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271606

RESUMO

INTRODUCTION: The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. METHODS: Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (ß-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. RESULTS: 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. DISCUSSION: We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA