Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pharm Pharmacol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762907

RESUMO

OBJECTIVES: Milk thistle has long been used in the treatment of liver and biliary disorders. In the present study, to make a long-acting delivery system for silibinin (SBN, a major active constituent of milk thistle seeds with antioxidant and hepatoprotective function), mesoporous silica composite nanoparticles (NC) were synthesized and coated with RBC membrane. METHODS: A modified Stöber method was used for NC synthesis, which was then characterized using FE-SEM, DLS, TEM, FTIR, and EDAX techniques. A suitable lysis buffer was used to prepare RBC-ghost, and sonication was used to coat SBN-loaded NC (SBN-NC). The RBC-ghost coated SBN-NC (SBN-NC-RBCG) was evaluated by SDS-PAGE, Bradford, TEM, EDAX, and DLS methods. SBN release was then compared for the SBN-NC and SBN-NC-RBCG samples. KEY FINDINGS: the RBC membrane proteins were recovered from the coating of SBN-NC-RBCG, and SBN release was sustained over 24 h when compared with the SBN-NC. CONCLUSIONS: Overall, through prolonging circulation in the bloodstream and evading the immune system, the developed system can improve SBN bioavailability in liver inflammation and fibrosis conditions that need further research.

2.
Comput Biol Med ; 144: 105386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272116

RESUMO

Drug conjugation with enzyme-sensitive peptides is one of the innovative smart delivery systems for cancer therapy. This delivery method has some advantages, such as lowering side effects and increasing treatment selectivity. Herein, two conjugates of doxorubicin and small peptide are designed that are sensitive to Cathepsin B, a tumor homing enzyme. The formation of nanoparticles at three different numbers of drug peptide prodrugs (including 30, 50, and 70 prodrugs) was studied. In addition, three metal-organic frameworks (MOF) nanocarriers, including Zeolitic Imidazolate Frameworks (ZIF), Universitetet I Oslo MOF (UIO-66), and MOF of Hong Kong University of Science and Technology (HKUST-1), were used to increase the resistance of the prodrugs to decomposition during blood flow circulation. Then, the interactions between doxorubicin's prodrug and different MOFs were investigated. Furthermore, the impact of microfluidics on nanoparticle interactions was studied. Molecular dynamic simulation was used to investigate thermodynamic and conformational parameters. The results showed that the concentration of doxorubicin prodrugs affected cluster formation. Moreover, based on Gibb's free energy analysis, the interaction of these prodrugs with various types of MOFs revealed more spontaneous interactions in microfluidic modeling conditions. ZIF had the best and most stable interactions with the prodrugs in bulk and microfluidic modeling. As a result, the best and most stable state was associated with a lower concentration of these prodrugs with ZIF in the microfluidic condition.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Pró-Fármacos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos , Ácidos Ftálicos , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico
3.
Iran J Med Sci ; 46(6): 475-486, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34840388

RESUMO

Background: Silibinin (SBN), a major active constituent of milk thistle seeds, exhibits numerous pharmacological activities. However, its oral bioavailability is low due to poor water solubility. This study aimed to develop a new synthetic approach for tuning the pore characteristics of mesoporous silica nanoparticles (MSNs) intended for the oral delivery of SBN. In addition, the effects of the pore diameter of MSNs on the loading capacity and the release profile of SBN were investigated. Methods: The present study was performed at Shiraz University of Medical Sciences, Shiraz, Iran, in 2019. This synthesis method shares the features of the simultaneous free-radical polymerization of methyl methacrylate and the sol-gel reaction of the silica precursor at the n-heptane/water interface. SBN was loaded onto MSNs, the in vitro release was determined, and the radical scavenging activities were compared between various pH values using the analysis of variance. Results: According to the Brunauer-Emmett-Teller protocol, the pore sizes were well-tuned in the range of 2 to 7 nm with a large specific surface area (600-1200 m2/g). Dynamic light scattering results showed that different volume ratios of n-heptane/water resulted in different sizes, ranging from 25 to 100 nm. Interestingly, high SBN loading (13% w/w) and the sustained release of the total drug over 12 hours were achieved in the phosphate buffer (pH=6.8). Moreover, the antioxidant activity of SBN was well preserved in acidic gastric pH. Conclusion: Well-tuned pores of MSNs provided a proper substrate, and thus, enhanced SBN loading and oral dissolution and preserved its antioxidant activity. Nevertheless, further in vitro and in vivo investigations are needed.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Polimerização , Dióxido de Silício/química , Silibina/farmacologia , Antioxidantes , Tamanho da Partícula , Porosidade , Solubilidade , Água/química
4.
Dalton Trans ; 49(42): 14891-14907, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33075117

RESUMO

A rational approach was adopted to design high-potential metal-based antitumor agents. A series of organometallic Pd(ii) complexes with a general formula of [Pd{κ2(C,C)-[(C6H4-2)PPh2]CH(CO)C6H4Ph-4}{κ2(N,O)}] (N,O = alanine (Pd-A), valine (Pd-V), leucine (Pd-L), l-isoleucine (Pd-I) and phenylalanine (Pd-F)) were prepared by cyclopalladation of the phosphorus ylide, bridge cleavage reaction and subsequent chelation of natural α-amino acids. The complexes were fully identified using IR and multinuclear 1H, 13C, 31P NMR spectroscopic methods. X-ray crystallography exhibited that the Pd(ii) atom is located in a slightly distorted square-planar environment surrounded by C,C-orthometallated phosphorus ylide as well as NO-pendant amino acid functionality. In vitro cytotoxicity evaluation of new cyclometallated Pd(ii) complexes toward a human leukemia (K562) cancer cell line indicated promising results. The highest cytotoxic activity was discovered in the case of phenylalanine (CH2C6H5). IC50 values of this complex on a panel of human tumor cell lines representative of liver (HepG2), breast (SKBR-3), and ovarian (A2780-Resistance/Sensitive) cancers also indicated promising antitumor effects in comparison with standard cisplatin. The binding interaction ability of the phenylalanine-containing orthopalladated complex, as the most efficient compound, with calf-thymus deoxyribonucleic acid (CT-DNA) and bovine serum albumin (BSA) was investigated. UV-Vis spectroscopy, competitive emission titration, and circular dichroism (CD) techniques demonstrated the intercalative binding of the Pd(ii) complex with DNA. Molecular docking studies also fully agreed with the experimental data. Examination of the reactivity towards the protein BSA revealed that the static quenching mechanism of BSA intrinsic fluorescence by the Pd(ii) complex with a binding constant (Kb) of ∼105 is indicative of the high affinity of the complex. The competitive binding experiment using site markers with definite binding sites demonstrated that the hydrophobic cavities of site I (subdomain IIA) are responsible for the bimolecular interaction between protein BSA and the complex. Molecular docking studies effectively confirmed the significance of hydrophobic interactions in Pd(ii)-BSA binding. The results of this study could greatly contribute to exploring new potent metal-based anticancer drugs.


Assuntos
Aminoácidos/química , Antineoplásicos/química , Complexos de Coordenação/química , Paládio/química , Soroalbumina Bovina/química , Alanina/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular , Complexos de Coordenação/farmacologia , DNA/química , Desenvolvimento de Medicamentos , Humanos , Substâncias Intercalantes , Isoleucina/química , Leucina/química , Conformação Molecular , Fenilalanina/química , Ligação Proteica , Relação Estrutura-Atividade , Valina/química
5.
Int J Nanomedicine ; 15: 2617-2631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368044

RESUMO

INTRODUCTION: As widely used chemotherapeutic agents, platinum compounds have several therapeutic challenges, such as drug resistance and adverse effects. Theranostic systems, macromolecular or colloidal therapeutics with companion diagnostics, not only address controlled drug delivery but also enable real-time monitoring of tumor sites. METHODS: Synthesis of magnetic mesoporous silica nanoparticles (MMSNs) was performed for dual magnetic resonance imaging and drug delivery. MMSN surfaces were modified by imidazoline groups (MMSN-Imi) for cisplatin (Cis-Pt) conjugation via free N-termini to achieve well-controlled drug-release kinetics. Cis-Pt adsorption isotherms and drug-release profile at pH 5 and 7.4 were investigated using inductively coupled plasma atomic emission spectroscopy. RESULTS: MMSN-Imi showed a specific surface area of 517.6 m2 g-1, mean pore diameter of 3.26 nm, and saturated magnetization of 53.63 emu/g. A relatively high r2/r1 relaxivity value was obtained for MMSN-Imi. The nanoparticles provided high Cis-Pt loading with acceptable loading capacity (~30% w:w). Sustained release of Cis-Pt under acidic conditions led to specific inhibitory effects on the growth of human epithelial ovarian carcinoma cells, determined using MTT assays. Dual acridine orange-propidium iodide staining was investigated, confirming induction of apoptosis and necrotic cell death. CONCLUSION: MMSN-Imi exhibited potential for applications in cancer chemotherapy and combined imaging.


Assuntos
Sistemas de Liberação de Medicamentos , Imidazolinas/química , Nanopartículas de Magnetita/química , Platina/administração & dosagem , Dióxido de Silício/química , Nanomedicina Teranóstica , Adsorção , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Morte Celular , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Hemólise , Humanos , Cinética , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Nitrogênio/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura , Difração de Raios X
6.
Mater Sci Eng C Mater Biol Appl ; 104: 109922, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499936

RESUMO

Synthesis of monodisperse carboxylic acid-functionalized magnetic mesoporous silica nanoparticles is performed by either two-step sol-gel process or post-grafting using citric acid modified isocyanate silane coupling agent (MMSN-NCO-CA) or succinic anhydride modified magnetic mesoporous silica (MMSN-NH-SA). Morphology, structure and magnetic properties of bare and mesoporous silica coated Fe3O4 core were studied using various techniques such as FTIR, VSM, TEM, FESEM, XRD and N2 adsorption-desorption isotherms (BET). Cisplatin (cis-Pt) adsorption isotherms and its release profile in various media were investigated by ICP-OES. MMSN-NCO-CA with mean particle size 107 nm had lower surface area (87.5 m2/g) and larger pore size (6.9 nm) in comparison with MMSN-NH-SA (respective values of 151.2 m2/g and 3.5 nm). cis-Pt loading into particles followed a saturable adsorption with respect to the drug to particle mass ratios. More sustained release of cis-Pt was observed for MMSN-NCO-CA, though both nanoparticles exhibited a pH- and saline concentration-dependent drug release. In addition, general and cis-Pt specific cytotoxicity were examined by MTT assay in MDA-MB-231 breast cancer cell line, and to further detect apoptosis, acridine orange/ethidium bromide dual cell staining was investigated by fluorescence microscopy. In-vitro anti-tumor efficiency of cis-Pt loaded MMSN-NCO-CA and MMSN-NH-SA were similarly enhanced in comparison to free cis-Pt; however, more specific apoptotic death occurred for cis-Pt loaded MMSN-NCO-CA. Therefore, the as-synthesized citric acid functionalized core-shell magnetic mesoporous hybrid nanoparticles could be used as a promising drug carriers for cancer therapy in-vivo.


Assuntos
Cisplatino/administração & dosagem , Ácido Cítrico/química , Sistemas de Liberação de Medicamentos , Compostos Férricos/química , Nanopartículas/química , Salinidade , Silanos/química , Dióxido de Silício/química , Adsorção , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/síntese química , Liberação Controlada de Fármacos , Compostos Férricos/síntese química , Hemólise , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Cinética , Magnetometria , Nanopartículas/ultraestrutura , Porosidade , Silanos/síntese química , Dióxido de Silício/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA