RESUMO
PURPOSE: The objective was to develop and evaluate the portability of a text mining algorithm for prospectively capturing disease progression in electronic health record (EHR) data of patients with metastatic non-small cell lung cancer (mNSCLC) treated with immunochemotherapy. METHODS: This study used EHR data from patients with mNSCLC receiving immunochemotherapy (between October 1, 2018, and December 31, 2022) in four Dutch hospitals. A text mining algorithm for capturing disease progression was developed in hospitals 1 and 2 and then transferred to hospitals 3 and 4 to evaluate portability. Performance metrics were calculated by comparing its outcomes with manual chart review. In addition, data were simulated to come available over time to assess performance in real-time applications. Median progression-free survival (PFS) was calculated using the Kaplan-Meier method to compare text mining with manual chart review. RESULTS: During development and portability, the text mining algorithm performed well in capturing disease progression, with all performance scores >90%. When real-time performance was simulated, the performance scores in all four hospitals exceeded 90% from week 15 after the start of follow-up. Although the exact progression dates varied in 46 patients of 157 patients with progressive disease, the number of patients labeled with progression too early (n = 24) and too late (n = 22) was well balanced with discrepancies ranging from -116 to 384 days. Nevertheless, the PFS curves constructed with text mining and manual chart review were highly similar for each hospital. CONCLUSION: In this study, an accurate text mining algorithm for capturing disease progression in the EHR data of patients with mNSCLC was developed. The algorithm was portable across different hospitals, and the performance over time was good, making this an interesting approach for prospective follow-up of multicenter cohorts.
Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas , Mineração de Dados , Progressão da Doença , Registros Eletrônicos de Saúde , Neoplasias Pulmonares , Estadiamento de Neoplasias , Humanos , Mineração de Dados/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-IdadeRESUMO
Reports from spontaneous reporting systems (SRS) are hypothesis generating. Additional evidence such as more reports is required to determine whether the generated drug-event associations are in fact safety signals. However, underreporting of adverse drug reactions (ADRs) delays signal detection. Through the use of natural language processing, different sources of real-world data can be used to proactively collect additional evidence for potential safety signals. This study aims to explore the feasibility of using Electronic Health Records (EHRs) to identify additional cases based on initial indications from spontaneous ADR reports, with the goal of strengthening the evidence base for potential safety signals. For two confirmed and two potential signals generated by the SRS of the Netherlands Pharmacovigilance Centre Lareb, targeted searches in the EHR of the Leiden University Medical Centre were performed using a text-mining based tool, CTcue. The search for additional cases was done by constructing and running queries in the structured and free-text fields of the EHRs. We identified at least five additional cases for the confirmed signals and one additional case for each potential safety signal. The majority of the identified cases for the confirmed signals were documented in the EHRs before signal detection by the Dutch Medicines Evaluation Board. The identified cases for the potential signals were reported to Lareb as further evidence for signal detection. Our findings highlight the feasibility of performing targeted searches in the EHR based on an underlying hypothesis to provide further evidence for signal generation.