Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1240936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075929

RESUMO

Introduction: Malaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is time-consuming and difficult to reproduce. Therefore, new diagnostic techniques based on digital image analysis using artificial intelligence tools can improve diagnosis and help automate it. Methods: In this study, a dataset of 2571 labeled thick blood smear images were created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural networks were trained on the same dataset to evaluate their performance in Plasmodium parasite detection. Attention modules were applied and compared with YOLOv5x results. To automate the entire diagnostic process, a prototype of 3D-printed pieces was designed for the robotization of conventional optical microscopy, capable of auto-focusing the sample and tracking the entire slide. Results: Comparative analysis yielded a performance for YOLOv5x on a test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 for leukocyte, early and mature Plasmodium trophozoites overall detection. F-score values of each category were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozoites detection. Attention modules performance show non-significant statistical differences when compared to YOLOv5x original trained model. The predictive models were integrated into a smartphone-computer application for the purpose of image-based diagnostics in the laboratory. The system can perform a fully automated diagnosis by the auto-focus and X-Y movements of the robotized microscope, the CNN models trained for digital image analysis, and the smartphone device. The new prototype would determine whether a Giemsa-stained thick blood smear sample is positive/negative for Plasmodium infection and its parasite levels. The whole system was integrated into the iMAGING smartphone application. Conclusion: The coalescence of the fully-automated system via auto-focus and slide movements and the autonomous detection of Plasmodium parasites in digital images with a smartphone software and AI algorithms confers the prototype the optimal features to join the global effort against malaria, neglected tropical diseases and other infectious diseases.

2.
Front Microbiol ; 13: 1006659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458185

RESUMO

Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.

3.
Big Data ; 8(3): 235-247, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397735

RESUMO

Modern organizations typically store their data in a raw format in data lakes. These data are then processed and usually stored under hybrid layouts, because they allow projection and selection operations. Thus, they allow (when required) to read less data from the disk. However, this is not very well exploited by distributed processing frameworks (e.g., Hadoop, Spark) when analytical queries are posed. These frameworks divide the data into multiple partitions and then process each partition in a separate task, consequently creating tasks based on the total file size and not the actual size of the data to be read. This typically leads to launching more tasks than needed, which, in turn, increases the query execution time and induces significant waste of computing resources. To allow a more efficient use of resources and reduce the query execution time, we propose a method that decides the number of tasks based on the data being read. To this end, we first propose a cost-based model for estimating the size of data read in hybrid layouts. Next, we use the estimated reading size in a multi-objective optimization method to decide the number of tasks and computational resources to be used. We prototyped our solution for Apache Parquet and Spark and found that our estimations are highly correlated (0.96) with the real executions. Further, using TPC-H we show that our recommended configurations are only 5.6% away from the Pareto front and provide 2.1 × speedup compared with default solutions.


Assuntos
Big Data , Gerenciamento de Dados/métodos , Armazenamento e Recuperação da Informação , Software , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA