Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079542

RESUMO

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Antígenos Transformantes de Poliomavirus/metabolismo , Poliomavírus das Células de Merkel/metabolismo , NF-kappa B/metabolismo , Quinases da Família src/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Tirosina/metabolismo
2.
Viruses ; 14(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336880

RESUMO

Merkel cell polyomavirus (MCV) causes one of the most aggressive human skin cancers, but laboratory studies on MCV replication have proven technically difficult. We report the first recombinase-mediated MCV minicircle (MCVmc) system that generates high levels of circularized virus, allowing facile MCV genetic manipulation and characterization of viral gene expression kinetics during replication. Mutations to Fbw7, Skp2, ß-TrCP and hVam6p interaction sites, or to the stem loop sequence for the MCV-encoded miRNA precursor, markedly increase viral replication, whereas point mutation to an origin-binding site eliminates active virus replication. To further increase the utility of this system, an mScarlet fusion protein was inserted into the VP1 c-terminus to generate a non-infectious reporter virus for studies on virus kinetics. When this reporter virus genome is heterologously expressed together with MCV VP1 and VP2, virus-like particles are generated. The reporter virus genome is encapsidated and can be used at lower biosafety levels for one-round infection studies. Our findings reveal that MCV has multiple, self-encoded viral restriction mechanisms to promote viral latency over lytic replication, and these mechanisms are now amenable to examination using a recombinase technology.


Assuntos
Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Polyomavirus , Infecções Tumorais por Vírus , Antígenos Virais de Tumores/genética , Humanos , Cinética , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Polyomavirus/genética , Polyomavirus/metabolismo , Recombinases/metabolismo , Replicação Viral/genética
3.
PLoS Pathog ; 17(6): e1009635, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143834

RESUMO

Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman's Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically.


Assuntos
Infecções por Herpesviridae/metabolismo , Fosfolipase C gama/metabolismo , Proteínas não Estruturais Virais/metabolismo , Quinases da Família src/metabolismo , Células HEK293 , Herpesvirus Humano 8/fisiologia , Humanos , Fosforilação , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/fisiologia
4.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323517

RESUMO

Viral noncoding RNAs have acquired increasing prominence as important regulators of infection and mediators of pathogenesis. Circular RNAs (circRNAs) generated by backsplicing events have been identified in several oncogenic human DNA viruses. Here, we show that Merkel cell polyomavirus (MCV), the etiologic cause of ∼80% of Merkel cell carcinomas (MCCs), also expresses circular RNAs. By RNase R-resistant RNA sequencing, four putative circRNA backsplice junctions (BSJs) were identified from the MCV early region (ER). The most abundantly expressed MCV circRNA, designated circMCV-T, is generated through backsplicing of all of ER exon II to form a 762-nucleotide (nt) circular RNA molecule. Curiously, circMCV-T, as well as two other less abundantly expressed putative MCV circRNAs, overlaps in a complementary fashion with the MCV microRNA (miRNA) locus that encodes MCV-miR-M1. circMCV-T is consistently detected in concert with linear T antigen transcripts throughout infection, suggesting a crucial role for this RNA molecule in the regulatory functions of the early region, known to be vital for viral replication. Knocking out the hairpin structure of MCV-miR-M1 in genomic early region expression constructs and using a new high-efficiency, recombinase-mediated, recircularized MCV molecular clone demonstrates that circMCV-T levels decrease in the presence of MCV-miR-M1, underscoring the interplay between MCV circRNA and miRNA. Furthermore, circMCV-T partially reverses the known inhibitory effect of MCV-miR-M1 on early gene expression. RNase R-resistant RNA sequencing of lytic rat polyomavirus 2 (RatPyV2) identified an analogously located circRNA, stipulating a crucial, conserved regulatory function of this class of RNA molecules in the family of polyomaviruses.IMPORTANCE Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. MCV circMCV-T interacts with another MCV noncoding RNA, miR-M1, to functionally modulate early region transcript expression important for viral replication and long-term episomal persistence. This work describes a dynamic regulatory network integrating circRNA/miRNA/mRNA biomolecules and underscores the intricate functional modulation between several classes of polyomavirus-encoded RNAs in the control of viral replication.


Assuntos
Carcinoma de Célula de Merkel/virologia , Regulação Viral da Expressão Gênica , Poliomavírus das Células de Merkel/genética , MicroRNAs/genética , RNA Circular/genética , RNA Viral/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Humanos , Poliomavírus das Células de Merkel/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , RNA Viral/metabolismo , Replicação Viral
5.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911496

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection.IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , RNA Circular , RNA Viral , Sarcoma de Kaposi/virologia , Vírion , Linhagem Celular , Humanos , Vírus Oncogênicos/genética , RNA não Traduzido , Montagem de Vírus
6.
Proc Natl Acad Sci U S A ; 115(37): E8737-E8745, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150410

RESUMO

Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) cause ∼2% of all human cancers. RNase R-resistant RNA sequencing revealed that both gammaherpesviruses encode multiple, uniquely stable, circular RNAs (circRNA). EBV abundantly expressed both exon-only and exon-intron circRNAs from the BamHI A rightward transcript (BART) locus (circBARTs) formed from a spliced BART transcript and excluding the EBV miRNA region. The circBARTs were expressed in all verified EBV latency types, including EBV-positive posttransplant lymphoproliferative disease, Burkitt lymphoma, nasopharyngeal carcinoma, and AIDS-associated lymphoma tissues and cell lines. Only cells infected with the B95-8 EBV strain, with a 12-kb BART locus deletion, were negative for EBV circBARTs. Less abundant levels of EBV circRNAs originating from LMP2- and BHLF1-encoding genes were also identified. The circRNA sequencing of KSHV-infected primary effusion lymphoma cells revealed a KSHV-encoded circRNA from the vIRF4 locus (circvIRF4) that was constitutively expressed. In addition, KSHV polyadenylated nuclear (PAN) RNA locus generated a swarm (>100) of multiply backspliced, low-abundance RNase R-resistant circRNAs originating in both sense and antisense directions consistent with a novel hyperbacksplicing mechanism. In EBV and KSHV coinfected cells, exon-only EBV circBARTs were located more in the cytoplasm, whereas the intron-retaining circBARTs were found in the nuclear fraction. KSHV circvIRF4 and circPANs were detected in both nuclear and cytoplasmic fractions. Among viral circRNAs tested, none were found in polysome fractions from KSHV-EBV coinfected BC1 cells, although low-abundance protein translation from viral circRNAs could not be excluded. The circRNAs are a new class of viral transcripts expressed in gammaherpesvirus-related tumors that might contribute to viral oncogenesis.


Assuntos
Vírus de DNA Tumorais/genética , Regulação Viral da Expressão Gênica , RNA Viral/genética , RNA/genética , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Linfoma/virologia , RNA Circular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Kaposi/virologia
7.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950425

RESUMO

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) causes the angiogenic tumor KS and two B-cell malignancies. The KSHV nonstructural membrane protein encoded by the open reading frame (ORF) K15 recruits and activates several cellular proteins, including phospholipase Cγ1 (PLCγ1), components of the NF-κB pathway, as well as members of the Src family of nonreceptor tyrosine kinases, and thereby plays an important role in the activation of angiogenic and inflammatory pathways that contribute to the pathogenesis of KS as well as KSHV productive (lytic) replication. In order to identify novel cellular components involved in the biology of pK15, we immunoprecipitated pK15 from KSHV-infected endothelial cells and identified associated proteins by label-free quantitative mass spectrometry. Cellular proteins interacting with pK15 point to previously unappreciated cellular processes, such as the endocytic pathway, that could be involved in the function of pK15. We found that the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, which is involved in the endocytosis of activated receptor tyrosine kinases and their signaling from intracellular organelles, interacts and colocalizes with pK15 in vesicular structures abundant in the perinuclear area. Further functional analysis revealed that PI3K-C2α contributes to the pK15-dependent phosphorylation of PLCγ1 and Erk1/2. PI3K-C2α also plays a role in KSHV lytic replication, as evidenced by the reduced expression of the viral lytic genes K-bZIP and ORF45 as well as the reduced release of infectious virus in PI3K-C2α-depleted KSHV-infected endothelial cells. Taken together, our results suggest a role of the cellular PI3K-C2α protein in the functional properties of the KSHV pK15 protein.IMPORTANCE The nonstructural membrane protein encoded by open reading frame K15 of Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV8) activates several intracellular signaling pathways that contribute to the angiogenic properties of KSHV in endothelial cells and to its reactivation from latency. A detailed understanding of how pK15 activates these intracellular signaling pathways is a prerequisite for targeting these processes specifically in KSHV-infected cells. By identifying pK15-associated cellular proteins using a combination of immunoprecipitation and mass spectrometry, we provide evidence that pK15-dependent signaling may occur from intracellular vesicles and rely on the endocytotic machinery. Specifically, a class II PI3K, PI3K-C2α, is recruited by pK15 and involved in pK15-dependent intracellular signaling and viral reactivation from latency. These findings are of importance for future intervention strategies that aim to disrupt the activation of intracellular signaling by pK15 in order to antagonize KSHV productive replication and tumorigenesis.


Assuntos
Herpesvirus Humano 8/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Replicação Viral/genética , Replicação do DNA , Endocitose , Células Endoteliais/virologia , Herpesvirus Humano 8/metabolismo , Humanos , Fases de Leitura Aberta , Fosfatidilinositol 3-Quinases/metabolismo , Sarcoma de Kaposi/virologia , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Ativação Viral , Latência Viral/genética , Latência Viral/fisiologia , Replicação Viral/fisiologia
8.
PLoS Pathog ; 13(9): e1006639, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28938025

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of the highly vascularized tumor Kaposi's sarcoma (KS), which is characterized by proliferating spindle cells of endothelial origin, extensive neo-angiogenesis and inflammatory infiltrates. The KSHV K15 protein contributes to the angiogenic and invasive properties of KSHV-infected endothelial cells. Here, we asked whether K15 could also play a role in KSHV lytic replication. Deletion of the K15 gene from the viral genome or its depletion by siRNA lead to reduced virus reactivation, as evidenced by the decreased expression levels of KSHV lytic proteins RTA, K-bZIP, ORF 45 and K8.1 as well as reduced release of infectious virus. Similar results were found for a K1 deletion virus. Deleting either K15 or K1 from the viral genome also compromised the ability of KSHV to activate PLCγ1, Erk1/2 and Akt1. In infected primary lymphatic endothelial (LEC-rKSHV) cells, which have previously been shown to spontaneously display a viral lytic transcription pattern, transfection of siRNA against K15, but not K1, abolished viral lytic replication as well as KSHV-induced spindle cell formation. Using a newly generated monoclonal antibody to K15, we found an abundant K15 protein expression in KS tumor biopsies obtained from HIV positive patients, emphasizing the physiological relevance of our findings. Finally, we used a dominant negative inhibitor of the K15-PLCγ1 interaction to establish proof of principle that pharmacological intervention with K15-dependent pathways may represent a novel approach to block KSHV reactivation and thereby its pathogenesis.


Assuntos
Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/virologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Western Blotting , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Sarcoma de Kaposi/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia
9.
Microb Pathog ; 101: 104-118, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27863885

RESUMO

Over the last decade infections with the mosquito transmitted chikungunya virus (CHIKV) have become a major worldwide concern, and considerable efforts have been made in understanding the interaction of this virus with the host cell machinery. Studies have documented the induction of the unfolded protein response (UPR), as well as the induction of apoptosis and autophagy in response to CHIKV infection. This study comparatively analysed these three processes in two cell lines, Hela and HepG2. Infection of Hela cells was characterized by activation of the PERK/eIF2α branch of the UPR, the induction of autophagy and early apoptosis, while infection of HepG2 cells was characterized by activation of the IRE/XBP1 branch of the UPR, limited or no activation of autophagy and comparatively later apoptosis. These results show that the specific cell context is an important mediator of the host cell response to CHIKV infection.


Assuntos
Vírus Chikungunya/patogenicidade , Estresse do Retículo Endoplasmático , Interações Hospedeiro-Patógeno , Apoptose , Autofagia , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Células HeLa , Células Hep G2 , Hepatócitos/fisiologia , Hepatócitos/virologia , Humanos , Resposta a Proteínas não Dobradas
10.
Curr Opin Virol ; 20: 11-19, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27518127

RESUMO

Kaposi's sarcoma (KS) is an unusual neoplasm characterized by extensive neoangiogenesis, infiltrates of inflammatory cells and atypically differentiated spindle cells of endothelial origin. KS is caused by an oncogenic γ-herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8). Several KSHV proteins can subvert multiple cellular angiogenic, mitogenic and inflammatory pathways. Here, we discuss the KSHV encoded membrane proteins vGPCR, K1 and K15, with a particular emphasis on their activation of cellular signaling pathways and their role in the development of specific features of KS.


Assuntos
Carcinogênese , Herpesvirus Humano 8/patogenicidade , Receptores de Quimiocinas/metabolismo , Sarcoma de Kaposi/fisiopatologia , Transdução de Sinais , Proteínas Virais/metabolismo , Humanos
11.
Proc Natl Acad Sci U S A ; 113(8): E1034-43, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26811480

RESUMO

The latency-associated nuclear antigen (LANA) of Kaposi sarcoma herpesvirus (KSHV) is mainly localized and functions in the nucleus of latently infected cells, playing a pivotal role in the replication and maintenance of latent viral episomal DNA. In addition, N-terminally truncated cytoplasmic isoforms of LANA, resulting from internal translation initiation, have been reported, but their function is unknown. Using coimmunoprecipitation and MS, we found the cGMP-AMP synthase (cGAS), an innate immune DNA sensor, to be a cellular interaction partner of cytoplasmic LANA isoforms. By directly binding to cGAS, LANA, and particularly, a cytoplasmic isoform, inhibit the cGAS-STING-dependent phosphorylation of TBK1 and IRF3 and thereby antagonize the cGAS-mediated restriction of KSHV lytic replication. We hypothesize that cytoplasmic forms of LANA, whose expression increases during lytic replication, inhibit cGAS to promote the reactivation of the KSHV from latency. This observation points to a novel function of the cytoplasmic isoforms of LANA during lytic replication and extends the function of LANA from its role during latency to the lytic replication cycle.


Assuntos
Antígenos Virais/metabolismo , Citoplasma/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Replicação Viral/fisiologia , Animais , Antígenos Virais/genética , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virologia , Células HeLa , Humanos , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Vero
12.
PLoS Pathog ; 11(8): e1005105, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295810

RESUMO

Kaposi's sarcoma (KS), caused by Kaposi's sarcoma herpesvirus (KSHV), is a highly vascularised tumour of endothelial origin. KSHV infected endothelial cells show increased invasiveness and angiogenesis. Here, we report that the KSHV K15 protein, which we showed previously to contribute to KSHV-induced angiogenesis, is also involved in KSHV-mediated invasiveness in a PLCγ1-dependent manner. We identified ßPIX, GIT1 and cdc42, downstream effectors of PLCγ1 in cell migration, as K15 interacting partners and as contributors to KSHV-triggered invasiveness. We mapped the interaction between PLCγ1, PLCγ2 and their individual domains with two K15 alleles, P and M. We found that the PLCγ2 cSH2 domain, by binding to K15P, can be used as dominant negative inhibitor of the K15P-PLCγ1 interaction, K15P-dependent PLCγ1 phosphorylation, NFAT-dependent promoter activation and the increased invasiveness and angiogenic properties of KSHV infected endothelial cells. We increased the binding of the PLCγ2 cSH2 domain for K15P by substituting two amino acids, thereby creating an improved dominant negative inhibitor of the K15P-dependent PLCγ1 activation. Taken together, these results demonstrate a necessary role of K15 in the increased invasiveness and angiogenesis of KSHV infected endothelial cells and suggest the K15-PLCγ1 interaction as a possible new target for inhibiting the angiogenic and invasive properties of KSHV.


Assuntos
Invasividade Neoplásica/patologia , Neovascularização Patológica/metabolismo , Fosfolipase C gama/metabolismo , Sarcoma de Kaposi/patologia , Proteínas Virais/metabolismo , Western Blotting , Células Endoteliais , Imunofluorescência , Herpesvirus Humano 8/metabolismo , Humanos , Imunoprecipitação , Neovascularização Patológica/patologia , Sarcoma de Kaposi/metabolismo , Ressonância de Plasmônio de Superfície , Transfecção
13.
PLoS One ; 7(4): e34800, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514668

RESUMO

Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms.


Assuntos
Vírus Chikungunya/fisiologia , Microglia/metabolismo , Microglia/virologia , Proteômica/métodos , Infecções por Alphavirus/metabolismo , Linhagem Celular , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA