Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 400: 130655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580168

RESUMO

The emerging hydrothermal liquefaction (HTL) process is evaluated against the classical anaerobic digestion (AD) processes for stabilizing wastewater sludges and recovering their energy- and nutrient-contents. Although HTL affords faster stabilization, better process stability, and liquid fuel and sterile fertilizer recovery, it suffers from higher energy demand and lower technology readiness level. For a rational comparison of these pathways, a multi-criteria evaluation is conducted considering 21 technical, environmental, economic, and social criteria. Criteria values for the HTL-pathway were derived from laboratory tests while those for the AD-pathway were compiled from literature. Of the 16 process alternatives evaluated, the AD-pathway including nitrogen-recovery by air-stripping and phosphorus recovery by the MEPHREC® process ranked first followed by the HTL-pathway. This multi-criteria study suggests that the HTL-pathway could be engineered as a superior alternative for sludge stabilization and resource recovery if phosphorus recovery and its technology readiness level could be improved.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Águas Residuárias/química , Fósforo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , Purificação da Água/métodos
2.
J Environ Manage ; 347: 119075, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769474

RESUMO

This study evaluated two pathways to recover the nitrogen-content of wastewater sludges as ammonium sulfate (AmS) for use as fertilizer. The first pathway entails sludge stabilization by hydrothermal liquefaction (HTL) followed by recovery of AmS from the resulting aqueous product by gas permeable membrane (GPM) separation. The second one entails stabilization of the sludges by anaerobic digestion (AD) followed by recovery of AmS from the resulting centrate by GPM separation. A bench-scale GPM reactor is shown to be capable of recovering >90% of N in the feed. Recoveries of NH3-N in the HTL-pathway ranged 96-100% in 5.5-7.5 h at mass removal rates of 0.2-0.3 g N/day, yielding 3.3-6.0 g AmS/L of feed. Recoveries of 98% were noted in the AD-pathway in 4 h at mass removal rates of 0.06-0.97 g N/day and a yield of 1.7-2.1 g AmS/L of feed. Inductively coupled plasma optical emission spectrometer analysis confirmed that both pathways yielded AmS meeting the US EPA and European region guidelines for land application. The GPM reactor enabled higher nitrogen-recoveries in the HTL-pathway than those reported for current practice of AD followed by ammonia stripping, ion exchange, reverse osmosis, and/or struvite precipitation (96-100% vs. 50-90%). A process model for the GPM reactor is validated using performance data on three different feedstocks.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Sulfato de Amônio , Estudos de Viabilidade , Nitrogênio , Reatores Biológicos
3.
Water Sci Technol ; 87(9): 2116-2127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186618

RESUMO

Removal of suspended solids from raw water is an essential process in water treatment plants. Conventional sedimentation tanks in water treatment plants occupy a large area and become expensive in urban areas. The use of plate settlers or tube settlers in sedimentation tanks to increase the efficiency and hence reduce the footprint of sedimentation tanks is an economical solution in water treatment. This study investigated the effectiveness of plate and tube settlers compared to conventional settlers in a water treatment plant. A three-dimensional Computational Fluid Dynamics (CFD) model was set up using ANSYS-CFX 17.2. Seven cases (a conventional settler, three plate settlers and three tube settlers) were analysed to compare the settler performances. The maximum removal efficiencies of all solid classes were approximately equal in plate and tube settlers with the same plate spacing and tube depth: around 100%, 67%, 28% and 9% for the solid classes with particle diameters of 41, 17, 9.5 and 5.0 µm, respectively. The settling efficiency remained unchanged with the increase of the plate settling area beyond 60% of the conventional settler area under the given tank and flow conditions. The tube cross-section shape does not affect the particle removal efficiency of a tube settler.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Hidrodinâmica , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA