Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Immunol ; 208(1): 49-53, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872977

RESUMO

The biological relevance of genes initially categorized as "pseudogenes" is slowly emerging, notably in innate immunity. In the HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G, -E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human effector IL-2-activated PBMCs and human IL-2-independent NK92-MI cell line activity. Finally, through in silico genotyping of the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations.


Assuntos
Membrana Celular/metabolismo , Genótipo , Proteína da Hemocromatose/genética , Células Matadoras Naturais/imunologia , Pseudogenes/genética , Alelos , Povo Asiático , Citotoxicidade Imunológica , Evolução Molecular , Frequência do Gene , Antígeno HLA-A11/genética , Haplótipos , Proteína da Hemocromatose/metabolismo , Homeostase , Humanos , Tolerância Imunológica , Células K562 , Ativação Linfocitária , População Branca
2.
Front Immunol ; 12: 717998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594332

RESUMO

Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.


Assuntos
Doenças Transmissíveis/etiologia , Doenças Transmissíveis/metabolismo , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Receptores Imunológicos/metabolismo , Animais , Autoimunidade , Biomarcadores , Mapeamento Cromossômico , Doenças Transmissíveis/terapia , Gerenciamento Clínico , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade , Imunomodulação , Ligantes , Família Multigênica , Especificidade de Órgãos , Ligação Proteica , Receptores Imunológicos/genética
3.
Trends Genet ; 37(5): 414-420, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33867017

RESUMO

The relationship between human genetic variation and disease has not been fully elucidated. According to the present view on infectious diseases pathogen resistance is linked to human leukocyte antigen (HLA) class I/II variants and their individual capacity to present pathogen-derived peptides. Yet, T cell education in the thymus occurs through negative and positive selection, and both processes are controlled by a combination of HLA class I/II variants and peptides from the self. Therefore, the capacity of given HLA class I/II variants to bind pathogen-derived peptides is only one part of the selective process to generate effective immune responses. We thus propose that peptidome variation contributes to shaping T cell receptor (TCR) repertoires and hence individual immune responses, and that this variation represents inherent modulator epitopes.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade/fisiologia , Peptídeos/genética , Peptídeos/imunologia , Suscetibilidade a Doenças , Epitopos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Peptídeos/metabolismo , Polimorfismo Genético , Receptores de Antígenos de Linfócitos T/imunologia
5.
Elife ; 82019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31159924

RESUMO

CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.


Assuntos
Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Variação Genética , Glucose/metabolismo , Alelos , Dieta , Evolução Molecular , Humanos , Seleção Genética
6.
Mol Immunol ; 112: 40-50, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078115

RESUMO

The classical HLA class I genes (HLA Ia) were extensively studied because of their implication in clinical fields and anthropology. Less is known about worldwide genetic diversity and linkage disequilibrium for non-classical HLA class I genes (HLA Ib) and HLA pseudogenes. Notably, HLA-H, which is deleted in a fraction of the population, remains scarcely explored. The aims of this study were 1/ to get further insight into HLA-H genetic diversity and into how this variability potentially affects its expression and 2/ to define HLA Ib worldwide allelic diversity and linkage. Exome sequence data from the 1000 Genomes Project were used to define second field HLA-A, -E, -F, -G and -H typing using PolyPheMe software. Allelic and two-loci haplotype frequencies were estimated using Gene[Rate] software both at worldwide and continental levels. Eleven novel HLA-H alleles identified in exome data were validated by NGS performed on 25 genomic DNA samples from the same cohort. Phylogenetic analysis and frequency distribution of HLA-H alleles revealed three clades, each predominantly represented in Admixed American, European and East Asian populations, African populations and South Asian populations. Among these eleven novel alleles, two potentially encode complete transmembrane HLA proteins. We confirm the high LD between HLA-H and -A, and between HLA-H and -G, and show the three genes have distinct worldwide allelic distribution. Conversely, HLA-E and HLA-F both showed little LD, displayed restricted allelic diversity and practically no difference in their distribution across the planet. Our work thus reveals an unexpectedly high HLA-H genetic diversity, with alleles highly represented in Asia possibly encoding a functional HLA protein. Functional implication of these results remains to be explored, both in physiological and pathological contexts.


Assuntos
Variação Genética/genética , Antígenos HLA-DQ/genética , Haplótipos/genética , Proteína da Hemocromatose/genética , Alelos , Ásia , Povo Asiático/genética , Frequência do Gene/genética , Genes MHC Classe I/genética , Humanos , Desequilíbrio de Ligação/genética , Filogenia
7.
PLoS One ; 13(10): e0206512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365549

RESUMO

Defining worldwide human genetic variation is a critical step to reveal how genome plasticity contributes to disease. Yet, there is currently no metric to assess the representativeness and completeness of current and widely used data on genetic variation. We show here that Human Leukocyte Antigen (HLA) genes can serve as such metric as they are both the most polymorphic and the most studied genetic system. As a test case, we investigated the 1,000 Genomes Project panel. Using high-accuracy in silico HLA typing, we find that over 20% of the common HLA variants and over 70% of the rare HLA variants are missing in this reference panel for worldwide genetic variation, due to undersampling and incomplete geographical coverage, in particular in Oceania and West Asia. Because common and rare variants both contribute to disease, this study thus illustrates how HLA diversity can detect and help fix incomplete sampling and hence accelerate efforts to draw a comprehensive overview of the genetic variation that is relevant to health and disease.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Ásia , Antígenos HLA/genética , Humanos , Oceania
8.
Immunogenetics ; 70(9): 571-583, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29869002

RESUMO

The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).


Assuntos
Receptores KIR , Terminologia como Assunto , Animais , Bovinos , Humanos , Macaca mulatta/genética , Pan troglodytes/genética , Pongo pygmaeus/genética
9.
Front Immunol ; 9: 278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527207

RESUMO

Human leukocyte antigen (HLA)-G, a HLA class Ib molecule, interacts with receptors on lymphocytes such as T cells, B cells, and natural killer cells to influence immune responses. Unlike classical HLA molecules, HLA-G expression is not found on all somatic cells, but restricted to tissue sites, including human bronchial epithelium cells (HBEC). Individual variation in HLA-G expression is linked to its genetic polymorphism and has been associated with many pathological situations such as asthma, which is characterized by epithelium abnormalities and inflammatory cell activation. Studies reported both higher and equivalent soluble HLA-G (sHLA-G) expression in different cohorts of asthmatic patients. In particular, we recently described impaired local expression of HLA-G and abnormal profiles for alternatively spliced isoforms in HBEC from asthmatic patients. sHLA-G dosage is challenging because of its many levels of polymorphism (dimerization, association with ß2-microglobulin, and alternative splicing), thus many clinical studies focused on HLA-G single-nucleotide polymorphisms as predictive biomarkers, but few analyzed HLA-G haplotypes. Here, we aimed to characterize HLA-G haplotypes and describe their association with asthmatic clinical features and sHLA-G peripheral expression and to describe variations in transcription factor (TF) binding sites and alternative splicing sites. HLA-G haplotypes were differentially distributed in 330 healthy and 580 asthmatic individuals. Furthermore, HLA-G haplotypes were associated with asthmatic clinical features showed. However, we did not confirm an association between sHLA-G and genetic, biological, or clinical parameters. HLA-G haplotypes were phylogenetically split into distinct groups, with each group displaying particular variations in TF binding or RNA splicing sites that could reflect differential HLA-G qualitative or quantitative expression, with tissue-dependent specificities. Our results, based on a multicenter cohort, thus support the pertinence of HLA-G haplotypes as predictive genetic markers for asthma.


Assuntos
Asma/genética , Marcadores Genéticos/genética , Antígenos HLA-G/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Dev Comp Immunol ; 84: 193-198, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29453999

RESUMO

Downstream of Kinase (DOK) proteins represent a multigenic family of adaptors that includes negative regulators of immune cell signaling. Using phylogenetics and intron/exon structure data, we show here that the seven human DOK genes (DOK1 to DOK7) form three highly divergent groups that emerged before the protostome-deuterostome split: DOK1/2/3, DOK4/5/6, and DOK7. For two of these three groups (DOK1/2/3 and DOK4/5/6), further gene duplications occurred in vertebrates and so while chordates only have three DOK genes, vertebrates have seven DOK genes over the three groups. From our expression analysis in humans, we show that each group of DOK genes has a distinct pattern of expression. The DOK1/2/3 group is immune specific, yet each of the three genes in the group has a distinct pattern of expression in immune cells. This immune specificity could thus be ancestral, with the DOK1/2/3 gene also being immune-related in protostomes. The DOK4/5/6 and DOK7 groups represent genes that are much less expressed in immune system than the DOK1/2/3 group. Interestingly, we identify a novel tyrosine based motif that is specific to the vertebrate DOK4/5/6 sequences. The evolution of the DOK genes is thus marked by a pattern of ancient duplications and functional specializations.


Assuntos
Proteínas de Ligação a DNA/genética , Sistema Imunitário/fisiologia , Proteínas Musculares/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Animais , Código de Barras de DNA Taxonômico , Evolução Molecular , Éxons , Duplicação Gênica , Especiação Genética , Humanos , Imunidade/genética , Família Multigênica/genética , Filogenia , Transdução de Sinais , Transcriptoma
11.
Genome Res ; 27(5): 813-823, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28360230

RESUMO

The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome.


Assuntos
Complemento C4/genética , Genes MHC da Classe II , Genes MHC Classe I , Haplótipos , Mucinas/genética , Polimorfismo Genético , Animais , Linhagem Celular , Mapeamento de Sequências Contíguas/métodos , Mapeamento de Sequências Contíguas/normas , Genoma Humano , Genômica/métodos , Genômica/normas , Humanos , Fases de Leitura Aberta , Pan troglodytes/genética , Padrões de Referência
12.
Immunogenetics ; 69(6): 379-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382515

RESUMO

The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.


Assuntos
Butirofilinas/genética , Evolução Molecular , Família Multigênica , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Animais , Butirofilinas/química , Butirofilinas/metabolismo , Códon , Feminino , Genômica/métodos , Genótipo , Humanos , Filogenia , Primatas/genética , Domínios Proteicos/genética , Recombinação Genética
13.
J Immunol ; 198(8): 3157-3169, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264973

RESUMO

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping, and data mining from the Great Ape Genome Project, we characterized the KIR alleles and haplotypes for panels of 10 Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between 5 and 10 KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean specific, one is Sumatran specific, and five are shared. Of 12 KIR gene-content haplotypes, 5 are Bornean specific, 5 are Sumatran specific, and 2 are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean specific, 65 are Sumatran specific, and 10 are shared.


Assuntos
Evolução Molecular , Pongo/genética , Pongo/imunologia , Receptores KIR/genética , Alelos , Animais , Cromossomos Artificiais Bacterianos , Haplótipos , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie
14.
Microbiol Spectr ; 4(3)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27337483

RESUMO

With the advent of next-generation sequencing, paleogenetics has considerably expanded over the past few years and notably encompassed the characterization of the genomes of archaic humans who lived more than 30,000 years ago. These paleogenetics investigations have revealed that admixture between modern and archaic humans occurred, with Neanderthals having contributed to 1.5% to 2.1% of modern Eurasian genomes, and Denisovans to 3% to 6% of modern Melanesian genomes and to approximately 0.2% of modern Asian genomes. Although these contributions are modest, they played a major role in shaping immune gene families, such as the HLA class I genes, for which the archaic alleles now represent more than 50% of the alleles in Europe and Asia. Such a high frequency is consistent with these archaic HLA class I variants having been positively selected because of their protective effect against contagious and devastating epidemics, such as those due to the plague agent Yersinia pestis or to Mycobacterium tuberculosis, which is responsible for deadly tuberculosis. While the exact nature of the infectious agents that contributed to the selection of the archaic variants is unknown, we are entering an exciting period in which paleogenetics and paleomicrobiology data can be integrated to generate a clearer picture of how the immune system of modern populations was shaped and the role admixture and epidemics have played in such evolutions.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/imunologia , Evolução Molecular , Fósseis , Sistema Imunitário , Imunogenética/métodos , Paleopatologia/métodos , Humanos , Seleção Genética
15.
Infect Genet Evol ; 39: 225-231, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26867815

RESUMO

The coevolution between a host and its obligate parasite is exemplified in the sucking lice that infest primates. In the context of close lice-host partnerships and cospeciation, Pediculus mjobergi, the louse of New World primates, has long been puzzling because its morphology resembles that of human lice. To investigate the possibility that P. mjobergi was transmitted to monkeys from the first humans who set foot on the American continent thousands of years ago, we obtained and compared P. mjobergi lice collected from howler monkeys from Argentina to human lice gathered from a remote and isolated village in Amazonia that has escaped globalization. Morphological examinations were first conducted and verified the similarity between the monkey and human lice. The molecular characterization of several nuclear and mitochondrial genetic markers in the two types of lice revealed that one of the P. mjobergi specimens had a unique haplotype that clustered with the haplotypes of Amazonian head lice that are prevalent in tropical regions in the Americas, a natural habitat of New World monkeys. Because this phylogenetic group forms a separate branch within the clade of lice from humans that were of American origin, this finding indicates that human lice have transferred to New World monkeys.


Assuntos
Especificidade de Hospedeiro , Infestações por Piolhos/parasitologia , Doenças dos Macacos/parasitologia , Pediculus , Animais , DNA Mitocondrial , Genótipo , Humanos , Pediculus/classificação , Pediculus/genética , Filogenia , Platirrinos
16.
Immunogenetics ; 67(10): 625-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260270

RESUMO

Infection of humans and chimpanzees with Hepatitis C virus (HCV) results in either the resolution of the acute infection or its progression to a persistent infection associated with chronic liver disease. In cohorts of human patients, resolution of HCV infection has been associated with homozygosity for both C1(+)HLA-C and its cognate inhibitory receptor, KIR2DL3. Compared here are the killer cell immunoglobulin-like receptors (KIR) and major histocompatibility complex (MHC) class I factors of chimpanzees who resolve, or resist, HCV infection with those chimpanzees who progress to chronic infection. Analysis of Pt-KIR gene content diversity associated two of the 12 Pt-KIR with clinical outcome. Activating Pt-KIR3DS2 and inhibitory Pt-KIR2DL9 are strong receptors specific for the C2 epitope. They are encoded by neighboring genes within the Pt-KIR locus that are in strong linkage disequilibrium. HCV-infected chimpanzees with KIR genotypes containing Pt-KIR3DS2 and KIR2DL9 are significantly more likely to progress to chronic infection than infected chimpanzees lacking the genes (p = 0.0123 and p = 0.0045, respectively), whereas human HLA-B allotypes having the C1 epitope are unusual, such allotypes comprise about one quarter of the chimpanzee Patr-B allotypes. Homozygous C1 (+) Patr-B are enriched in chimpanzees with chronic HCV infection, and the compound genotype of homozygous C1 (+) Patr-B combined with either Pt-KIR3DS2 or Pt-KIR2DL9 is more strongly associated with disease progression than either factor alone (p = 0.0031 and p = 0.0013, respectively). Thus, despite similarities suggesting a common basis in disease resistance, there are substantial differences in the KIR and MHC class I correlations observed for HCV-infected humans and chimpanzees, consistent with the divergence of their KIR and MHC class I systems.


Assuntos
Predisposição Genética para Doença/genética , Hepatite C/genética , Antígenos de Histocompatibilidade Classe I/genética , Pan troglodytes/genética , Receptores KIR/genética , Animais , Progressão da Doença , Frequência do Gene , Variação Genética , Genótipo , Haplótipos , Hepacivirus/fisiologia , Hepatite C/virologia , Pan troglodytes/virologia , Receptores KIR3DL2/genética
17.
Front Public Health ; 2: 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229054

RESUMO

BACKGROUND: Relapsing fever borreliae are vector-borne bacteria responsible for febrile infection in humans in North America, Africa, Asia, and in the Iberian Peninsula in Europe. Relapsing fever borreliae are phylogenetically closely related, yet they differ in pathogenicity and vectors. Their long-term taxonomy, based on geography and vector grouping, needs to be re-apprised in a genomic context. We therefore embarked into genomic analyses of relapsing fever borreliae, focusing on species found in Africa. RESULTS: Genome-wide phylogenetic analyses group Old World Borrelia crocidurae, Borrelia hispanica, B. duttonii, and B. recurrentis in one clade, and New World Borrelia turicatae and Borrelia hermsii in a second clade. Accordingly, average nucleotide identity is 99% among B. duttonii, B. recurrentis, and B. crocidurae and 96% between latter borreliae and B. hispanica while the similarity is 86% between Old World and New World borreliae. Comparative genomics indicates that the Old World relapsing fever B. duttonii, B. recurrentis, B. crocidurae, and B. hispanica have a 2,514-gene pan genome and a 933-gene core genome that includes 788 chromosomal and 145 plasmidic genes. Analyzing the role that natural selection has played in the evolution of Old World borreliae species revealed that 55 loci were under positive diversifying selection, including loci coding for membrane, flagellar, and chemotaxis proteins, three categories associated with adaption to specific niches. CONCLUSION: Genomic analyses led to a reappraisal of the taxonomy of relapsing fever borreliae in Africa. These analyses suggest that B. crocidurae, B. duttonii, and B. recurrentis are ecotypes of a unique genomospecies, while B. hispanica is a distinct species.

18.
Cell Host Microbe ; 16(3): 338-50, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211076

RESUMO

Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.


Assuntos
Proteínas de Helminto/imunologia , Legionella pneumophila/fisiologia , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose , Planárias/imunologia , Planárias/microbiologia , Staphylococcus aureus/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Proteínas de Helminto/genética , Humanos , Legionella pneumophila/imunologia , Proteínas Associadas aos Microtúbulos/genética , Planárias/genética , Staphylococcus aureus/imunologia
19.
BMC Infect Dis ; 14: 370, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24996424

RESUMO

BACKGROUND: Classic Whipple's disease is caused by T. whipplei and likely involves genetic predispositions, such as the HLA alleles DRB1*13 and DQB1*06, that are more frequently observed in patients. T. whipplei carriage occurs in 2-4% of the general population in France. Subclinical hypothyroidism, characterized by high levels of TSH and normal free tetra-iodothyronine (fT4) dosage, has been rarely associated with specific HLA factors. METHODS: We retrospectively tested TSHus in 80 patients and 42 carriers. In cases of dysthyroidism, we tested the levels of free-T4 and anti-thyroid antibodies, and the HLA genotypes were also determined for seven to eight patients. RESULTS: In this study, 72-74% of patients and carriers were male, and among the 80 patients, 14 (17%) individuals had a high level of TSH, whereas none of the carriers did (p<0. 01). In the 14 patients with no clinical manifestations, the T4 levels were normal, and no specific antibodies were present. Four patients treated with antibiotics, without thyroxine supplementation, showed normal levels of TSHus after one or two years. One patient displayed a second episode of subclinical hypothyroidism during a Whipple's disease relapse five years later, but the subclinical hypothyroidism regressed after antibiotic treatment. HLA typing revealed nine alleles that appeared more frequently in patients than in the control cohort, but none of these differences reached significance due to the small size of the patient group. CONCLUSION: Regardless of the substratum, classic Whipple's disease could lead to subclinical hypothyroidism. We recommend systematically testing the TSH levels in patients with Whipple's disease.


Assuntos
Hipotireoidismo/microbiologia , Doença de Whipple/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Feminino , França/epidemiologia , Antígenos HLA-D/genética , Humanos , Hipotireoidismo/epidemiologia , Masculino , Pessoa de Meia-Idade , Doença de Whipple/epidemiologia , Doença de Whipple/genética , Adulto Jovem
20.
Infect Genet Evol ; 23: 209-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24524985

RESUMO

Two genera of lice parasitize humans: Pthirus and Pediculus. The latter is of significant public health importance and comprises two ecotypes: the body louse and the head louse. These ecotypes are morphologically and genetically notably similar; the body louse is responsible for three infectious diseases: Louse-borne epidemic typhus, relapsing fever, and trench fever. Mitochondrial DNA studies have shown that there are three obviously divergent clades of head lice (A, B and C), and only one clade of body lice is shared with head lice (clade A). Each clade has a unique geographic distribution. Lice have been parasitizing humans for millions of years and likely dispersed throughout the World with the human migrations out of Africa, so they can be good markers for studying human evolution. Here, we present an overview of the origin of human lice and their role in vector pathogenic bacteria that caused epidemics, and we review the association between lice clades and human migrations.


Assuntos
Bactérias Gram-Negativas/fisiologia , Infestações por Piolhos/microbiologia , Pediculus/classificação , Pediculus/genética , Animais , Evolução Molecular , Genes de Insetos , Genes Mitocondriais , Humanos , Insetos Vetores , Infestações por Piolhos/epidemiologia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA