Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542530

RESUMO

A new ibuprofen derivative, (E)-2-(4-isobutylphenyl)-N'-(4-oxopentan-2-ylidene) propane hydrazide (IA), was synthesized, along with its metal complexes with Co, Cu, Ni, Gd, and Sm, to investigate their anti-inflammatory efficacy and COX-2 inhibition potential. Comprehensive characterization, including 1H NMR, MS, FTIR, UV-vis spectroscopy, and DFT analysis, were employed to determine the structural configurations, revealing unique motifs for Gd/Sm (capped square antiprismatic/tricapped trigonal prismatic) and Cu/Ni/Co (octahedral) complexes. Molecular docking with the COX-2 enzyme (PDB code: 5IKT) and pharmacokinetic assessments through SwissADME indicated that these compounds have superior binding energies and pharmacokinetic profiles, including BBB permeability and gastrointestinal absorption, compared to the traditional ibuprofen standalone. Their significantly lower IC50 values further suggest a higher efficacy as anti-inflammatory agents and COX-2 inhibitors. These research findings not only introduce promising ibuprofen derivatives for therapeutic applications but also set the stage for future validation and exploration of this new generation of ibuprofen compounds.


Assuntos
Anti-Inflamatórios , Ibuprofeno , Ibuprofeno/farmacologia , Ibuprofeno/química , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia
2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139850

RESUMO

According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 µM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 µM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-ß, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.

3.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364366

RESUMO

A novel derivative of ibuprofen and salicylaldehyde N'-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl·2H2O, [Ni(L)2], [Co(L)2]·H2O, [Gd(L)2(H2O)2](NO3)·2H2O and [Sm(L)2(H2O)2](NO3)·2H2O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT Homo sapiens). The binding energies were -7.52, -9.41, -9.51, -8.09, -10.04, and -8.05 kcal/mol for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, which suggests the enhancement of anti-inflammatory behaviors compared with the binding energy of ibuprofen (-5.38 kcal/mol). The anti-inflammatory properties of the new compounds were assessed in vitro using the western blot analysis method and the enzyme-linked immunosorbent assay (ELISA), consistent with the outcomes obtained from docking. The half-maximal inhibitory concentration (IC50) values are 4.9, 1.7, 3.7, 5.6, 2.9, and 2.3 µM for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, showing that they are more effective inhibitors of COX2 than ibuprofen (IC50 = 31.4 µM). The brain or intestinal estimated permeation method (BOILED-Egg) showed that HL and its Co complex have high gastrointestinal absorption, while only the free ligand has high brain penetration. The binding constants of Co, Cu, and Gd complexes with DNA were recorded as 2.20 × 104, 2.27 × 106, and 4.46 × 103 M-1, respectively, indicating the intercalator behavior of interaction. The newly synthesized ibuprofen derivative and its metal complexes showed greater anti-inflammatory activity than ibuprofen.


Assuntos
Complexos de Coordenação , Ibuprofeno , Humanos , Ibuprofeno/farmacologia , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ciclo-Oxigenase 2 , Complexos de Coordenação/química , DNA/química , Ligantes , Anti-Inflamatórios/farmacologia
4.
ACS Omega ; 6(8): 5244-5254, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681565

RESUMO

Several metal complexes of methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate derivatives were synthesized and tested for their anti-tumor activities. The ligands include 3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoic acid (1), 3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanehydrazide (2), and 3-(4-chlorophenyl)-N'-(4-(dimethylamino)benzylidene)-3-hydroxy-2,2-dimethylpropanehydrazide (3). The ligands were reacted with Cu (II), Ni (II), and La (III) ions. The formed complexes were characterized using elemental analysis (M%), molar conductivity in DMF (0.001 M), DTA, TG, FTIR, ICP-AES, and magnetic susceptibility. The chemical structures of the obtained complexes were interpreted, and their chemical formulas were postulated. The anti-cancer activities of these complexes were examined on human colorectal carcinoma cells (HCT-116) and also on normal cells (HEK-293). The 48 h post treatments showed that out of 12 compounds, 10 compounds showed inhibitory actions on HCT-116 cells, whereas two compounds did not show any inhibitory actions. Compounds 6c and 4a showed the highest inhibitory actions with IC50 = 0.154 and 0.18 mM and additionally compounds 3, 4b, and 6a with IC50 = 0.267, 0.205, and 0.284 mM, respectively. All tested compounds did not show any inhibitory action on normal HEK-293 cells. Molecular docking results provided a good evidence for activity of the lead compounds 3 and 4a as CDK8-CYCC kinase inhibitors, which may proposed the mechanism of action toward colon cancer therapy.

5.
RSC Adv ; 10(15): 8825-8841, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496560

RESUMO

A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs. Saponification and hydrazinolysis of the model ester afforded the corresponding acid and hydrazide, respectively. The model ester was transformed into the corresponding trichloroacetimidate or acetate by the reaction with trichloroacetonitrile and acetic anhydride, respectively. N-Alkyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropan-amides and methyl-2-[(3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoyl)amino] alkanoates were obtained by the reaction of corresponding acid or hydrazide with amines and amino acid esters via DCC and azide coupling methods. Methyl-3-aryl-3-(4-chlorophenyl)-2,2-dimethylpropanoates were obtained in good yields and short reaction time from the corresponding trichloroacetimidate or acetate by the reaction with C-active nucleophiles in the presence of TMSOTf (0.1 eq.%) via C-C bond formation. The antiproliferative and apoptotic activity were further studied with molecular docking. The 48 post-treatments showed that out of 24 compounds, 12 compounds showed inhibitory actions on HCT-116 cells, we have calculated the inhibitory action (IC50) of these compounds on HCT-116 and we have found that the IC50 values were in between 0.12 mg mL-1 to 0.81 mg mL-1. The compounds (7a & 7g) showed highest inhibitory activity (0.12 mg mL-1), whereas compound 7d showed the lowest inhibitory activity (0.81 mg mL-1). We have also examined inhibitory action on normal and non-cancerous cells (HEK-293 cells) and confirmed that action of these compounds was specific to cancerous cells. The cancerous cells were also examined for nuclear disintegration through staining with DAPI, (4',6-diamidino-2-phenylindole) is a blue-fluorescent DNA stain, and we have found that there was loss of DAPI staining in the compound treated cancerous cells. The compounds were found to potentially act through the HSP90 and TRAP1 mediated signaling pathway. Compounds 7a and 7g showed the highest selectivity to TRAP1 which explained its superior activity.

6.
ACS Omega ; 4(20): 18555-18566, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737814

RESUMO

A series of methyl 2-[3-(3-phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and their corresponding hydrazides and N-alkyl 3-((3-phenylquinoxalin-2-yl)sulfanyl)propanamides were prepared on the basis of the chemoselective Michael reaction of acrylic acid with the parent substrate 3-phenylquinoxaline-2(1H)-thione. The parent thione was produced by a convenient novel thiation method from the corresponding 3-phenylquinoxalin-2(1H)-one. The chemical structures of the newly synthesized compounds were confirmed by elemental analyses, 1H and 13C NMR. The antiproliferative activity of the synthesized compounds was tested against human HCT-116 and MCF-7 cell lines. Out of 25 screened derivatives, 10 active compounds exhibited IC50's in the range 1.9-7.52 µg/mL on the HCT-116, and 17 active compounds exhibited IC50's in the range 2.3-6.62 µg/mL on the MCF-7 cell lines compared to the reference drug doxorubicin (IC50 3.23 µg/mL). The structure-activity relationship of the tested compounds was studied through their binding affinity to the human thymidylate synthase allosteric site in silico using molecular docking and proved the quinoxaline ring as a suitable scaffold carrying a peptidomimetic side chain in position 3.

7.
Chem Asian J ; 10(11): 2467-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26178184

RESUMO

Nanomembrane canister-like architectures were fabricated by using hexagonal mesocylinder-shaped aluminosilica nanotubes (MNTs)-porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 µm-long membrane channel enabled the creation of unique canister-like channel necks and cavities. The open-tubular canister architecture design provides controllable, reproducible, and one-step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO3(2-)) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low-level detection limit of 0.0093 µM. Real analytical data showed that approximately 96% of SeO3(2-) anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water.


Assuntos
Nanotubos/química , Ácido Selenioso/análise , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Ânions/química , Concentração de Íons de Hidrogênio , Ligantes , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA