Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Brain Res Bull ; 211: 110935, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570076

RESUMO

Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested ß-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these ß-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic ß-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.


Assuntos
Etanol , Transportador 2 de Aminoácido Excitatório , Núcleo Accumbens , Córtex Pré-Frontal , Animais , Masculino , Transportador 2 de Aminoácido Excitatório/metabolismo , Etanol/farmacologia , Ratos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Biomarcadores/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
2.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172923

RESUMO

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Apoptose
3.
Metabolites ; 13(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37623908

RESUMO

Fentanyl is a highly potent opioid analgesic that is approved medically to treat acute and chronic pain. There is a high potential for overdose-induced organ toxicities, including liver toxicity, and this might be due to the increase of recreational use of opioids. Several preclinical studies have demonstrated the efficacy of beta-lactams in modulating the expression of glutamate transporter-1 (GLT-1) in different body organs, including the liver. The upregulation of GLT-1 by beta-lactams is associated with the attenuation of hyperglutamatergic state, which is a characteristic feature of opioid use disorders. A novel experimental beta-lactam compound with no antimicrobial properties, MC-100093, has been developed to attenuate dysregulation of glutamate transport, in part by normalizing GLT-1 expression. A previous study showed that MC-100093 modulated hepatic GLT-1 expression with subsequent attenuation of alcohol-increased fat droplet content in the liver. In this study, we investigated the effects of fentanyl overdose on liver metabolites, and determined the effects of MC-100093 and ceftriaxone in the liver of a fentanyl overdose mouse model. Liver samples from control, fentanyl overdose, and fentanyl overdose ceftriaxone- or MC-100093-treated mice were analyzed for metabolomics using gas chromatography-mass spectrometry. Heatmap analysis revealed that both MC-100093 and ceftriaxone attenuated the effects of fentanyl overdose on several metabolites, and MC-100093 showed superior effects. Statistical analysis showed that MC-100093 reversed the effects of fentanyl overdose in some metabolites. Moreover, enrichment analysis revealed that the altered metabolites were strongly linked to the glucose-alanine cycle, the Warburg effect, gluconeogenesis, glutamate metabolism, lactose degradation, and ketone body metabolism. The changes in liver metabolites induced by fentanyl overdose were associated with liver inflammation, an effect attenuated with ceftriaxone pre-treatments. Ceftriaxone normalized fentanyl-overdose-induced changes in liver interleukin-6 and cytochrome CYP3A11 (mouse homolog of human CYP3A4) expression. Our data indicate that fentanyl overdose impaired liver metabolites, and MC-100093 restored certain metabolites.

4.
Neuropharmacology ; 232: 109515, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001726

RESUMO

Several ß-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of ß-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel ß-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.


Assuntos
Alcoolismo , Anti-Infecciosos , Camundongos , Animais , Masculino , Feminino , Monobactamas , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/metabolismo , Etanol
5.
J Pharmacol Exp Ther ; 383(3): 208-216, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153003

RESUMO

Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.


Assuntos
Transportador 2 de Aminoácido Excitatório , beta-Lactamas , Animais , Masculino , Ratos , Consumo de Bebidas Alcoólicas/metabolismo , beta-Lactamas/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Receptores Ativados por Proliferador de Peroxissomo
6.
J Chem Inf Model ; 61(9): 4745-4757, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34403259

RESUMO

The main protease of SARS-CoV-2 virus, Mpro, is an essential element for viral replication, and inhibitors targeting Mpro are currently being investigated in many drug development programs as a possible treatment for COVID-19. An in vitro pilot screen of a highly focused collection of compounds was initiated to identify new lead scaffolds for Mpro. These efforts identified a number of hits. The most effective of these was compound SIMR-2418 having an inhibitory IC50 value of 20.7 µM. Molecular modeling studies were performed to understand the binding characteristics of the identified compounds. The presence of a cyclohexenone warhead group facilitated covalent binding with the Cys145 residue of Mpro. Our results highlight the challenges of targeting Mpro protease and pave the way toward the discovery of potent lead molecules.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia
7.
Int J Pharm ; 608: 121057, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34461173

RESUMO

To enhance the poor bioavailability and extensive liver metabolism of atorvastatin calcium (ATC), we have developed an oleic acid-reinforced PEGylated polymethacrylate (OLA-PEG-E-RLPO) transdermal film as a convenient and alternative delivery system. The effect of varying levels of Eudragit RLPO, PEG 400, and oleic acid on the target product profile was optimized through Quality by Design (QbD) approach. The ATC-loaded OLA-PEG-E-RLPO transdermal films were evaluated in ex-vivo experiments using full thickness skin, utilizing Franz cell studies, and undergone in-vivo pharmacokinetics/pharmacodynamics (PK/PD) assessment, using poloxamer-induced dyslipidemic Sprague-Dawley rats. At 2 and 12 h, the optimized ATC films with a thickness of 0.79 mm showed permeation of 37.34% and 97.23% into the receptor compartment, respectively. Steady-state flux was 0.172 mg/cm2h, with 7.01 × 10-4 cm/h permeability coefficient, and 0.713 × 10-3 cm2/h diffusion coefficient. In-vivo PK results indicated that the absorption profiles (AUC0-∞) of the optimized film in pre-treated group of animals were 8.6-fold and 2.8-fold greater than controls pre-treated with non-PEGylated non-oleic acid film and orally administered ATC, respectively. PD assessment of the lipid panel indicated that the lipid profile of the optimized film pre-treated group reached normal levels after 12 h, along with the significant enhancement over the non-PEGylated non-oleic acid film and the oral marketed tablet groups. The histopathological findings revealed near-normal hepatocyte structure for the optimized film pre-treated animal group. Our results further indicate that transdermal delivery films based on an optimized ATC-loaded OLA-PEG-E-RLPO were successfully developed and their assessment in both ex-vivo and in-vivo suggests enhanced permeability and improvement in bioavailability and antidyslipidemic activity of ATC. This approach can provide several advantages, especially during chronic administration of ATC, including improvement in patient compliance, therapeutic benefits, bioavailability, and feasibility for commercialization and as a platform for other drug classes.


Assuntos
Ácido Oleico , Absorção Cutânea , Administração Cutânea , Animais , Atorvastatina/metabolismo , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Permeabilidade , Polietilenoglicóis/metabolismo , Ácidos Polimetacrílicos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Pele/metabolismo
8.
ACS Med Chem Lett ; 12(6): 961-968, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141081

RESUMO

Beginning with opium itself, natural and synthetic opioids have been used as analgesics for over 8000 years and were likely abused as drugs of recreation for that long as well. However, the "opioid crisis" resulted in attempts to avoid or limit opioid analgesics in favor of other therapies and methods. Mu opioid agonists can be effective analgesics but suffer from addiction, tolerance, and dangerous, sometimes fatal, side effects. One exception to this generalization is dezocine (Dalgan), a mixed mu/kappa opioid partial agonist. Dezocine is at least as effective as morphine in reducing acute pain in animal models and clinical applications such as postoperative pain. And while dezocine was discontinued in western markets in 2011, it has become the favored opioid analgesic in China, capturing over 40% of the market. Additionally, dezocine possesses norepinephrine uptake inhibitory activity, which may synergize with mu agonism in the case of acute pain treatment and possibly endow the drug with antinociceptive activity in neuropathic pain conditions. This Innovations article summarizes the history and properties of dezocine and presents evidence and rationale for why dezocine has undergone a resurrection.

9.
Bioorg Med Chem ; 42: 116251, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116381

RESUMO

Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Pharmacol Exp Ther ; 378(2): 51-59, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33986035

RESUMO

Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The ß-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic ß-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.


Assuntos
beta-Lactamas , Animais , Cocaína , Masculino , Ratos
11.
J Chem Inf Model ; 61(2): 1020-1032, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33538596

RESUMO

Currently the entire human population is in the midst of a global pandemic caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2). This highly pathogenic virus has to date caused >71 million infections and >1.6 million deaths in >180 countries. Several vaccines and drugs are being studied as possible treatments or prophylactics of this viral infection. M3CLpro (coronavirus main cysteine protease) is a promising drug target as it has a significant role in viral replication. Here we use the X-ray crystal structure of M3CLpro in complex with boceprevir to study the dynamic changes of the protease upon ligand binding. The binding free energy was calculated for water molecules at different locations of the binding site, and molecular dynamics (MD) simulations were carried out for the M3CLpro/boceprevir complex, to thoroughly understand the chemical environment of the binding site. Several HCV NS3/4a protease inhibitors were tested in vitro against M3CLpro. Specifically, asunaprevir, narlaprevir, paritaprevir, simeprevir, and telaprevir all showed inhibitory effects on M3CLpro. Molecular docking and MD simulations were then performed to investigate the effects of these ligands on M3CLpro and to provide insights into the chemical environment of the ligand binding site. Our findings and observations are offered to help guide the design of possible potent protease inhibitors and aid in coping with the COVID-19 pandemic.


Assuntos
Antivirais/farmacologia , Cisteína Proteases/química , SARS-CoV-2/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Simulação por Computador , Cristalografia por Raios X , Cisteína Proteases/efeitos dos fármacos , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2/enzimologia , Serina Proteases
12.
ACS Med Chem Lett ; 11(11): 2156-2164, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214824

RESUMO

The dual PI3Kα/ m TOR inhibitors represent a promising molecularly targeted therapy for cancer. Here, we documented the discovery of new 2,4-disubstituted quinazoline analogs as potent dual PI3Kα/sm TOR inhibitors. Our structure based chemistry endeavor yielded six excellent compounds 9e, 9f, 9g, 9k, 9m, and 9o with single/double digit nanomolar IC50 values against both enzymes and acceptable aqueous solubility and stability to oxidative metabolism. One of those analogs, 9m, possessed a sulfonamide substituent, which has not been described for this chemical scaffold before. The short direct synthetic routes, structure-activity relationship, in vitro 2D cell culture viability assays against normal fibroblasts and 3 breast cancer cell lines, and in vitro 3D culture viability assay against MCF7 cells for this series are described.

13.
ACS Med Chem Lett ; 11(10): 1820-1828, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062159

RESUMO

Prior to genetic mapping, the majority of drug discovery efforts involved phenotypic screening, wherein compounds were screened in either in vitro or in vivo models thought to mimic the disease state of interest. While never completely abandoning phenotypic approaches, the labor intensive nature of such tests encouraged the pharmaceutical industry to move away from them in favor of target-based drug discovery, which facilitated throughput and allowed for the efficient screening of large numbers of compounds. However, a consequence of reliance on target-based screening was an increased number of failures in clinical trials due to poor correlation between novel mechanistic targets and the actual disease state. As a result, the field has seen a recent resurrection in phenotypic drug discovery approaches. In this work, we highlight some recent phenotypic projects from our industrial past and in our current academic drug discovery environment that have provided encouraging results.

14.
Bioorg Med Chem Lett ; 30(2): 126806, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31757667

RESUMO

Gaucher disease (GD) results from inherited mutations in the lysosomal enzyme ß-glucocerobrosidase (GCase). Currently available treatment options for Type 1 GD are not efficacious for treating neuronopathic Type 2 and 3 GD due to their inability to cross the blood-brain barrier. In an effort to identify small molecules which could be optimized for CNS penetration we identified tamoxifen from a high throughput phenotypic screen on Type 2 GD patient-derived fibroblasts which reversed the disease phenotype. Structure activity studies around this scaffold led to novel molecules that displayed improved potency, efficacy and reduced estrogenic/antiestrogenic activity compared to the original hits. Here we present the design, synthesis and structure activity relationships that led to the lead molecule Compound 31.


Assuntos
Fibroblastos/metabolismo , Doença de Gaucher/patologia , Bibliotecas de Moléculas Pequenas/química , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Concentração Inibidora 50 , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fenótipo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Tamoxifeno/química , Tamoxifeno/metabolismo
15.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Bioorg Med Chem Lett ; 28(13): 2270-2274, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803730

RESUMO

The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Desenho de Fármacos , Piperazinas/farmacocinética , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Estilbenos/farmacocinética , Animais , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Cobaias , Meia-Vida , Microssomos Hepáticos/metabolismo , Piperazinas/síntese química , Piperazinas/química , Estereoisomerismo , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 28(6): 1127-1131, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463447

RESUMO

We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ribonuclease P/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ribonuclease P/metabolismo , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 27(14): 3117-3122, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571824

RESUMO

PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Concentração Inibidora 50 , Células MCF-7 , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
19.
J Cell Biochem ; 118(10): 3268-3280, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295503

RESUMO

Agnoprotein is an important regulatory protein of the human polyoma JC virus (JCV) and plays critical roles during the viral replication cycle. It forms highly stable dimers and oligomers through its Leu/Ile/Phe-rich domain, which is important for the stability and function of the protein. We recently resolved the partial 3D structure of this protein by NMR using a synthetic peptide encompassing amino acids Thr17 to Gln52, where the Leu/Ile/Phe- rich region was found to adopt a major alpha-helix conformation spanning amino acids 23-39. Here, we report the resolution of the 3D structure of full-length JCV agnoprotein by NMR, which not only confirmed the existence of the previously reported major α-helix domain at the same position but also revealed the presence of an additional minor α-helix region spanning amino acid residues Leu6 to lys13. The remaining regions of the protein adopt an intrinsically unstructured conformation. J. Cell. Biochem. 118: 3268-3280, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Vírus JC/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais Reguladoras e Acessórias/química , Humanos , Estrutura Secundária de Proteína
20.
Biol Psychiatry ; 81(2): 92-100, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27499089

RESUMO

BACKGROUND: The 12/15-lipoxygenase (12/15-LO) enzyme is upregulated in the brains of patients with Alzheimer's disease (AD), and its expression levels influence the onset of the AD-like phenotype in mouse models. However, whether targeting this pathway after the neuropathology and behavioral impairments have been established remains to be investigated. METHODS: Triple transgenic (3xTg) mice received either PD146176-a selective and specific pharmacological inhibitor of 12/15-LO-or placebo starting at 12 months of age for 12 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. RESULTS: At the end of the study, mice in the control group showed a worsening of memory and learning abilities, whereas mice receiving PD146176 were undistinguishable from wild-type mice. The same group also had significantly lower amyloid beta levels and deposition, less tau neuropathology, increased synaptic integrity, and autophagy activation. Ex vivo and in vitro genetic and pharmacological studies found that the mechanism involved in these effects was the activation of neuronal autophagy. CONCLUSIONS: Our findings provide new insights into the disease-modifying action of 12/15-LO pharmacological inhibition and establish it as a viable therapeutic approach for patients with AD.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Araquidonato 12-Lipoxigenase/fisiologia , Araquidonato 15-Lipoxigenase/fisiologia , Autofagia , Encéfalo/enzimologia , Disfunção Cognitiva/enzimologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Encefalite/metabolismo , Medo/efeitos dos fármacos , Medo/fisiologia , Fluorenos/administração & dosagem , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Camundongos , Camundongos Transgênicos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA