Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893230

RESUMO

Patients with pancreatic cancer (PC) showing mismatch repair (MMR) deficiency may benefit from immunotherapy. Microsatellite instability (MSI) is a hallmark of MMR deficiency (MMR-D). Here, we estimated the prevalence of MSI in PC, investigated germline and somatic mutations in the three MMR genes (MLH1, MSH2, and MSH6), and assessed the relationship between MMR genes mutations and MSI status in PC. Clinical specimens from PC patients were analyzed using targeted next-generation sequencing, including paired normal and tumor specimens from 155 patients, tumor-only specimens from 86 patients, and normal-only specimens from 379 patients. The MSI status of 235 PCs was assessed via PCR. Pathogenic/likely pathogenic (P/LP) germline variants in the MMR genes were identified in 1.1% of patients, while somatic variants were found in 2.6% of patients. No MSI-H tumors were detected. One patient carried two variants (P (VAF = 0.57) and LP (VAF = 0.25)) simultaneously; however, their germline/somatic status remains unknown due to the investigation focusing solely on the tumor and MSI analysis was not performed for this patient. MSI is rare in PC, even in tumors with MMR genes mutations. Our findings underscore the importance of assessing tumor MMR-D status in PC patients with confirmed Lynch syndrome when deciding whether to prescribe immunotherapy.

2.
Front Bioeng Biotechnol ; 12: 1371596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605988

RESUMO

Codon optimization has evolved to enhance protein expression efficiency by exploiting the genetic code's redundancy, allowing for multiple codon options for a single amino acid. Initially observed in E. coli, optimal codon usage correlates with high gene expression, which has propelled applications expanding from basic research to biopharmaceuticals and vaccine development. The method is especially valuable for adjusting immune responses in gene therapies and has the potenial to create tissue-specific therapies. However, challenges persist, such as the risk of unintended effects on protein function and the complexity of evaluating optimization effectiveness. Despite these issues, codon optimization is crucial in advancing gene therapeutics. This study provides a comprehensive review of the current metrics for codon-optimization, and its practical usage in research and clinical applications, in the context of gene therapy.

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894951

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fibrose , Bacteroidetes , Fígado/patologia
4.
PLoS One ; 18(5): e0285664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192187

RESUMO

In 2020, SARS-CoV-2 has spread rapidly across the globe, with most nations failing to prevent or substantially delay its introduction. While many countries have imposed some limitations on trans-border passenger traffic, the effect of these measures on the global spread of COVID-19 strains remains unclear. Here, we report an analysis of 3206 whole-genome sequences of SARS-CoV-2 samples from 78 regions of Russia covering the period before the spread of variants of concern (between March and November 2020). We describe recurring imports of multiple COVID-19 strains into Russia throughout this period, giving rise to 457 uniquely Russian transmission lineages, as well as repeated cross-border transmissions of local circulating variants out of Russia. While the phylogenetically inferred rate of cross-border transmissions was somewhat reduced during the period of the most stringent border closure, it still remained high, with multiple inferred imports that each led to detectable spread within the country. These results indicate that partial border closure has had little effect on trans-border transmission of variants, which helps explain the rapid global spread of newly arising SARS-CoV-2 variants throughout the pandemic.


Assuntos
COVID-19 , Entorses e Distensões , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , Federação Russa/epidemiologia
5.
Mol Ther Nucleic Acids ; 31: 482-493, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36865089

RESUMO

CRISPR-Cas9 systems can directly target the hepatitis B virus (HBV) major genomic form, covalently closed circular DNA (cccDNA), for decay and demonstrate remarkable anti-HBV activity. Here, we demonstrate that CRISPR-Cas9-mediated inactivation of HBV cccDNA, frequently regarded as the "holy grail" of viral persistence, is not sufficient for curing infection. Instead, HBV replication rapidly rebounds because of de novo formation of HBV cccDNA from its precursor, HBV relaxed circular DNA (rcDNA). However, depleting HBV rcDNA before CRISPR-Cas9 ribonucleoprotein (RNP) delivery prevents viral rebound and promotes resolution of HBV infection. These findings provide the groundwork for developing approaches for a virological cure of HBV infection by a single dose of short-lived CRISPR-Cas9 RNPs. Blocking cccDNA replenishment and re-establishment from rcDNA conversion is critical for completely clearing the virus from infected cells by site-specific nucleases. The latter can be achieved by widely used reverse transcriptase inhibitors.

6.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201513

RESUMO

Cancer is a major global public health challenge, affecting both quality of life and mortality. Recent advances in genetic research have uncovered hereditary cancer syndromes (HCS) that predispose individuals to malignant neoplasms. While traditional single-gene testing has focused on high-penetrance genes, the past decade has seen a shift toward multigene panels, which facilitate the analysis of multiple genes associated with specific HCS. This approach reveals variants in less-studied gene regions and improves our understanding of cancer predisposition. In a study composed of Russian patients with clinical signs of HCS, we used a multigene hereditary cancer panel and revealed 21.6% individuals with pathogenic or likely pathogenic genetic variants. BRCA1/BRCA2 mutations predominated, followed by the CHEK2 and ATM variants. Of note, 16 previously undescribed variants were identified in the MUTYH, GALNT12, MSH2, MLH1, MLH3, EPCAM, and POLE genes. The implications of the study extend to personalized cancer prevention and treatment strategies, especially in populations lacking extensive epidemiological data, such as Russia. Overall, our research provides valuable genetic insights that give the way for further investigation and advances in the understanding and management of hereditary cancer syndromes.

7.
Biomedicines ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359282

RESUMO

To continue progress in the treatment of cardiovascular disease, there is a need to improve the overall understanding of the processes that contribute to the pathogenesis of cardiovascular disease (CVD). Exploring the role of gut microbiota in various heart diseases is a topic of great interest since it is not so easy to find such reliable connections despite the fact that microbiota undoubtedly affect all body systems. The present study was conducted to investigate the composition of gut microbiota in patients with atherosclerotic cardiovascular disease (ASCVD) and heart failure syndromes with reduced ejection fraction (HFrEF) and HF with preserved EF (HFpEF), and to compare these results with the microbiota of individuals without those diseases (control group). Fecal microbiota were evaluated by three methods: living organisms were determined using bacterial cultures, total DNA taxonomic composition was estimated by next generation sequencing (NGS) of 16S rRNA gene (V3-V4) and quantitative assessment of several taxa was performed using qPCR (quantitative polymerase chain reaction). Regarding the bacterial culture method, all disease groups demonstrated a decrease in abundance of Enterococcus faecium and Enterococcus faecalis in comparison to the control group. The HFrEF group was characterized by an increased abundance of Streptococcus sanguinus and Streptococcus parasanguinis. NGS analysis was conducted at the family level. No significant differences between patient's groups were observed in alpha-diversity indices (Shannon, Faith, Pielou, Chao1, Simpson, and Strong) with the exception of the Faith index for the HFrEF and control groups. Erysipelotrichaceae were significantly increased in all three groups; Streptococcaceae and Lactobacillaceae were significantly increased in ASCVD and HFrEF groups. These observations were indirectly confirmed with the culture method: two species of Streptococcus were significantly increased in the HFrEF group and Lactobacillus plantarum was significantly increased in the ASCVD group. The latter observation was also confirmed with qPCR of Lactobacillus sp. Acidaminococcaceae and Odoribacteraceae were significantly decreased in the ASCVD and HFrEF groups. Participants from the HFpEF group showed the least difference compared to the control group in all three study methods. The patterns found expand the knowledge base on possible correlations of gut microbiota with cardiovascular diseases. The similarities and differences in conclusions obtained by the three methods of this study demonstrate the need for a comprehensive approach to the analysis of microbiota.

8.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563713

RESUMO

Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the "brain-gut-microbiome axis", a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain-gut-microbiome axis in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microbioma Gastrointestinal , Microbiota , Aminoácidos , Animais , Bactérias , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Ratos
9.
Ther Adv Med Oncol ; 14: 17588359221083050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309086

RESUMO

Background: Mutations in homologous recombination (HR) and Fanconi anemia (FA) genes may predispose to pancreatic cancer (PC) and enable the prediction of sensitivity to platinum-based chemotherapy. FOLFIRINOX is a standard treatment option for non-selected PC patients and could be effective due to undiagnosed DNA repair deficiency. Here, we aimed to determine the frequency of mutations in genes involved in the HR and FA pathways, evaluate their clinical implications, and determine the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) of PC patients treated with platinum. Methods: We performed targeted DNA sequencing of 30 genes (ABRAXAS1, ATM, ATR, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDKN2A, CHEK1, CHEK2, FANCC, FANCF, FANCG, FANCI, FANCL, FANCM, MRE11A, NBN, PALB2, PTEN, RAD50, RAD51C, RAD51D, RAD52, RAD54B, RBBP8, RINT1, SLX4, and XRCC2) for 543 PC patients. Results: In BRCA/PALB2-mutated patients with advanced PC (33 patients, 6.1%), the PFS and OS were higher for first-line platinum therapy than for non-platinum therapy [PFS: HR = 0.28, 95% confidence interval (CI) = 0.10-0.81, p = 0.02; OS: HR = 0.31, 95% CI = 0.08-1.16, p = 0.08]. Among 93 patients (17.1%) with mutations in other HR/FA genes, no statistically significant difference in PFS and OS was observed between first-line platinum therapy and non-platinum therapy (PFS: HR = 0.83, 95% CI = 0.43-1.62, p = 0.59; OS: HR = 0.58, 95% CI = 0.28-1.22, p = 0.15). For patients with early PC, no prognostic value was observed for BRCA1/2, PALB2, or other HR/FA genes mutations. Moreover, a personal history of breast, ovarian, pancreatic, or prostate cancer was identified as the only independent predictor of the risk of BRCA/PALB2 mutations (HR = 5.83, 95% CI = 2.16-15.73, p < 0.01). Conclusion: Mutations in the BRCA1/2 and PALB2 genes increase the sensitivity of PC to platinum agents. Thus, alterations in these genes in PC patients must be determined prior to anticancer therapy.

10.
Invest New Drugs ; 39(4): 987-1000, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683500

RESUMO

Objective The problem of drug resistance to BRAF-targeted therapy often occurs in melanoma treatment. Activation of PI3K/AKT/mTOR signaling pathway is one of the mechanisms of acquired resistance and a potential target for treatment. In the current research, we investigated that dual inhibition of mTOR and MEK synergistically reduced the viability of melanoma cells in vitro. Methods A combination of rapamycin (a macrolide immunosuppressant, mTOR inhibitor) and binimetinib (an anti-cancer small molecule, selective inhibitor of MEK) was studied using a panel of melanoma cell lines, including patient-derived cells. Results It was found, that combinatorial therapy of rapamycin (250 nM) and binimetinib (2 µM) resulted in 25% of cell viability compared to either rapamycin (85%) or binimetinib alone (50%) for A375 and vemurafenib-resistant Mel IL/R cells. The suppressed activation of mTOR and MEK by combined rapamycin and binimetinib treatment was confirmed using Western blot assay. Cell death occured via the apoptosis pathway; however, the combination treatment significantly increased the apoptosis only for Mel IL/R cells. The enhanced cytotoxic effect was also associated with enhanced cell cycle arrest in the G0/G1 phase. Conclusion In general, we provide the evidence that dual inhibition of mTOR and MEK could be promising for further preclinical investigations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/farmacologia , Melanoma/tratamento farmacológico , Sirolimo/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Vemurafenib/farmacologia
11.
Cancer Genet ; 250-251: 25-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249369

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) holds great potential for cancer therapy and can provide diagnostic and prognostic information before and during treatment. METHODS: Plasma DNA samples from 97 melanoma patients, 20 healthy donors and 3 patients with benign skin tumors were analyzed by microarray analysis and droplet digital PCR (ddPCR). RESULTS: A microarray for simultaneous detection of six BRAF V600 mutations in ctDNA has been developed. The method allows the detection of 0.05% mutated DNA from WT DNA background. For paired samples (pre-surgery plasma and tumor tissue) isolated from 74 patients, the concordance of genotypes between tumor DNA and ctDNA was 65% (48/74). BRAF mutations in ctDNA were detected in 27/50 patients with BRAF-positive tumors and in 3/24 patients with BRAF wild-type tumors. The presence of ctDNA BRAF mutations in 23 plasma samples from melanoma patients undergoing therapy correlated significantly with tumor progression (P=0.005). The increase in cell-free DNA levels measured by ddPCR also correlated with disease progression (P=0.02). The concordance of results obtained by microarray identification of BRAF mutations and those obtained by ddPCR was 91%. CONCLUSION: The novel microarray-based approach can be a useful non-invasive tool for accurate identification of ctDNA BRAF mutations to monitor disease progression.


Assuntos
DNA Tumoral Circulante/genética , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Biópsia Líquida , Masculino , Melanoma/sangue , Melanoma/patologia , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/patologia
12.
Viruses ; 12(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074965

RESUMO

Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.


Assuntos
Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/tendências , Viroses/diagnóstico , Viroses/etiologia , Biologia Computacional/métodos , Biologia Computacional/tendências , Febre de Causa Desconhecida/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendências , Vírus/genética
13.
Diagn Pathol ; 14(1): 21, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782194

RESUMO

BACKGROUND: A giant congenital melanocytic nevus (GCMN) is found in 0.1% of live-born infants. If present, the lesion has a chance of about 6% to develop into malignant melanoma. Both children and adults can be affected by malignant melanoma arising in a giant congenital nevus. Up to 95% of GCMNs harbor NRAS mutations, and mutations in the BRAF, MC1R, TP53, and GNAQ genes have also been described. The individualization of therapy is required, but diagnostic and prognostic criteria remain controversial. CASE PRESENTATIONS: We report two cases: 1) melanoma arising in a giant congenital nevus during the first month of life complicated with neurocutaneous melanosis (NCM), and 2) melanoma arising in a giant congenital nevus during the first 6 months of life. Pathology, immunohistochemistry, and genetic analyses of tumor tissue were performed. The first case revealed only a non-pathogenic P72R polymorphism of the TP53 gene in the homozygote condition. For the second case, a Q61K mutation was detected in the NRAS gene. CONCLUSION: Malignant melanoma associated with GCMN is rare and therefore poorly understood. Outcomes have been linked to the stage at diagnosis, but no additional pathological prognostic factors have been identified. The most frequent genetic event in giant CMNs is NRAS mutations, which was discovered in one of our cases. To accumulate evidence to improve disease prognosis and outcomes, children with congenital melanocytic nevus should be included in a systemic follow-up study from birth.


Assuntos
Melanoma/patologia , Nevo Pigmentado/patologia , Neoplasias Cutâneas/patologia , Humanos , Lactente , Recém-Nascido , Masculino
14.
Oncol Rep ; 40(1): 385-394, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749510

RESUMO

The incidence of malignant melanoma is increasing. The discovery of agents specifically targeting the mutated cascades has provided a good response for patients with oncogenic B-Raf proto-оncogene, serine/threonine kinase (BRAF). However, numerous studies continue to focus on novel methods of treatment to overcome acquired resistance to novel drugs. Recently, it has been revealed that inhibition of endoplasmic reticulum (ER) stress chaperon 78 kDa glucose-regulated protein 78 (GRP78) leads to down-regulation of autophagy and increased sensitivity to temozolomide (TMZ) treatment. Melanoma cells have a different sensitivity to TMZ treatment, which corresponds to the basal autophagy level. In the present study, we demonstrated that downregulation of GRP78 mitigated chemoresistance to TMZ in three melanoma cell lines. We found that downregulation of GRP78 led to inhibition of autophagy, cell cycle arrest in the G0/G1 phase, and activation of caspase-7-induced apoptosis, and this was affected by the initial autophagy level. Moreover, inhibition of GRP78 mitigated the combined TMZ and chloroquine effect. Our data revealed that autophagy inhibition through downregulation of ER stress response could overcome resistance to TMZ treatment in melanoma cells with a high basal level of autophagy treatment, which makes this combination a potential potent antitumor treatment for metastatic melanoma.


Assuntos
Dacarbazina/análogos & derivados , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Melanoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 7/genética , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
15.
BMC Genomics ; 19(Suppl 3): 113, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29504907

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS: Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS: Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Hexoquinase/genética , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
16.
BMC Med Genomics ; 11(Suppl 1): 17, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29504908

RESUMO

BACKGROUND: Carotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated. METHODS: Exome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina). RESULTS: Exome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6-8 mutations per megabase (Mb). Genes with the highest mutation rate were identified. CONCLUSIONS: Exome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs.


Assuntos
Biomarcadores Tumorais/genética , Tumor do Corpo Carotídeo/genética , Sequenciamento do Exoma/métodos , Exoma , Mutação , Tumor do Corpo Carotídeo/diagnóstico , Humanos
17.
Oncotarget ; 8(32): 52304-52320, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881731

RESUMO

Target inhibitors are used for melanoma treatment, and their effectiveness depends on the tumor genotype. We developed a diagnostic biochip for the detection of 39 clinically relevant somatic mutations in the BRAF, NRAS, KIT, GNAQ, GNA11, MAP2K1 and MAP2K2 genes. We used multiplex locked nucleic acid (LNA) PCR clamp for the preferable amplification of mutated over wild type DNA. The amplified fragments were labeled via the incorporation of fluorescently labeled dUTP during PCR and were hybridized with specific oligonucleotides immobilized on a biochip. This approach could detect 0.5% of mutated DNA in the sample analyzed. The method was validated on 253 clinical samples and six melanoma cell lines. Among 253 melanomas, 129 (51.0%) BRAF, 45 (17.8%) NRAS, 6 (2.4%) KIT, 4 (1.6%) GNAQ, 2 (0.8%) GNA11, 2 (0.8%) MAP2K1 and no MAP2K2 gene mutations were detected by the biochip assay. The results were compared with Sanger sequencing, next generation sequencing and ARMS/Scorpion real-time PCR. The specimens with discordant results were subjected to LNA PCR clamp followed by sequencing. The results of this analysis were predominantly identical to the results obtained by the biochip assay. Infrequently, we identified rare somatic mutations. In the present study we demonstrate that the biochip-based assay can effectively detect somatic mutations in approximately 70% of melanoma patients, who may require specific targeted therapy.

18.
BMC Genet ; 18(Suppl 1): 117, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297384

RESUMO

BACKGROUND: Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. RESULTS: We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1, and FOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5, and SMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. CONCLUSIONS: We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA