Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1281670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929176

RESUMO

Introduction and aims: In the context of increasing population and decreasing soil fertility, food security is one of humanity's greatest challenges. Large amounts of waste, such as sewage sludge, are produced annually, with their final disposal causing environmental pollution and hazards to human health. Sludge has high amounts of nitrogen (N), and, when safely recycled by applying it into the soil as composted sewage sludge (CSS), its residual effect may provide gradual N release to crops. A field study was conducted in the Brazilian Cerrado. The aims were to investigate the residual effect of successive applications of CSS as a source of N in the common bean (Phaseolus vulgaris L. cv. BRS Estilo)-palisade grass (Urochloa brizantha (A.Rich.) R.D. Webster)-soybean (Glycine max L.) rotation under no-tillage. Additionally, N cycling was monitored through changes in N metabolism; the efficiency of biological N2 fixation (BNF) and its implications for plant nutrition, development, and productivity, was also assessed. Methods: The experiment consisted of a randomized complete block design comparing four CSS rates (10, 15, 20, and 25 Mg ha-1, wet basis) to a control treatment (without adding mineral or organic fertilizer) over two crop years. Multiple plant and soil analyses (plant development and crop yield, Falker chlorophyll index (FCI), enzymatic, biochemical, 15N natural abundance, was evaluated, root and shoot N accumulation, etc.) were evaluated. Results and discussion: Results showed that CSS: i) maintained adequate N levels for all crops, increasing their productivity; ii) promoted efficient BNF, due to the stability of ureide metabolism in plants and increased protein content; iii) increased the nitrate content and the nitrate reductase activity in soybean; iv) affected urease activity and ammonium content due to changes in the plant's urea metabolism; v) increased N accumulation in the aerial part of palisade grass. Composted sewage sludge can be used as an alternative source to meet crops' N requirements, promoting productivity gains and N cycling through forage and improving N metabolism.

2.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299132

RESUMO

Composted sewage sludge (CSS) is an organic fertilizer that can be used as a source of micronutrients in agriculture. However, there are few studies with CSS to supply micronutrients for the bean crop. We aimed to evaluate micronutrient concentrations in the soil and their effects on nutrition, extraction, export, and grain yield in response to CSS residual application. The experiment was carried out in the field at Selvíria-MS, Brazil. The common bean cv. BRS Estilo was cultivated in two agricultural years (2017/18 and 2018/19). The experiment was designed in randomized blocks with four replications. Six different treatments were compared: (i) four increasing CSS rates, i.e., CSS5.0 (5.0 t ha-1 of applied CSS, wet basis), CSS7.5, CSS10.0, CSS12.5; (ii) a conventional mineral fertilizer (CF); (iii) a control (CT) without CSS and CF application. The available levels of B, Cu, Fe, Mn, and Zn were evaluated in soil samples collected in the 0-0.2 and 0.2-0.4 m soil surface horizons. The concentration, extraction, and export of micronutrients in the leaf and productivity of common beans were evaluated. The concentration of Cu, Fe, and Mn ranged from medium to high in soil. The available levels of B and Zn in the soil increased with the residual rates of CSS, which were statistically not different from the treatments with CF. The nutritional status of the common bean remained adequate. The common bean showed a higher requirement for micronutrients in the second year. The leaf concentration of B and Zn increased in the CSS7.5 and CSS10.0 treatments. There was a greater extraction of micronutrients in the second year. Productivity was not influenced by the treatments; however, it was higher than the Brazilian national average. Micronutrients exported to grains varied between growing years but were not influenced by treatments. We conclude that CSS can be used as an alternative source of micronutrients for common beans grown in winter.

3.
Plants (Basel) ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904024

RESUMO

Biological nitrogen fixation in soybean is enhanced when seed is treated with cobalt (Co) and molybdenum (Mo) prior to planting. In this study, our objective was to verify if Co and Mo application during the reproductive phase of the crop increases seed Co and Mo concentration without adverse effects on seed quality. Two experiments were conducted. First, we investigated foliar and soil Co and Mo application under greenhouse conditions. Next, we validated the results obtained in the first study. The treatments for both experiments consisted of Co doses combined with Mo, and a control without Co and Mo application. The foliar application was more efficient in producing enriched Co and Mo seed; meanwhile, as Co doses increased so did Co and Mo concentrations in the seed. There were no adverse effects on nutrition, development, quality, and yield of parent plants and seed when these micronutrients were applied. The seed showed higher germination, vigor, and uniformity for the development of soybean seedlings. We concluded that the application of 20 g ha-1 Co and 800 g ha-1 Mo via foliar application at the reproductive stage of soybean increased germination rate and achieved the best growth and vigor index of enriched seed.

4.
Environ Sci Pollut Res Int ; 29(60): 90779-90790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35876991

RESUMO

Phytoextraction of rare earth elements (REE) from contaminated soils has gained importance during the last few decades. The Poços de Caldas municipality in Brazil is known for its mineral richness, including large reserves of REE. In this study, we report light REE (La, Ce, Sm, Pr, and Nd) in soils and plants collected in an area. Composite soil samples and plant individuals were collected, and total concentrations of LREE in soils were determined by wavelength dispersive X-ray fluorescence (WDXRF). The plant available LREE concentrations in soils were estimated upon the acetic acid method (F1 fractions) of the stepwise sequential extraction procedure, together with plant content that was analysed by inductively coupled plasma mass spectrometry (ICP-MS). The total sum concentrations of tested LREE in soils varied from 5.6 up to 37.9 g kg-1, the bioavailable fraction was ca. 1%, and a linear relationship was found between them. The only exception was Sm, whose availability was lesser and did not show a linear relationship. The concentration of LREE in non-accumulator plants varied from 1.3-950 mg kg-1 for Ce, La 1.1-99 mg kg-1, Sm 0.04-9.31 mg kg-1, Pr 0.1-24.1 mg kg-1, and Nd 0.55-81 mg kg-1. The concentration of LREE among shoots did not show a linear relation either with the available fraction or total content. The screening also revealed Christella dentata (Forssk.) Brownsey & Jermy, Thelypteridaceae family, as a promising hyperaccumulator species. The concentrations of LREE among shoots of six individuals of this species were in the ranges from 115 to 1872 mg kg-1 for Ce, La 190-703 mg kg-1, Sm 9-48 mg kg-1, Pr 32-144 mg kg-1, and Nd 105-478 mg kg-1.


Assuntos
Humanos , Brasil
5.
Environ Monit Assess ; 194(1): 20, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890002

RESUMO

With its accumulation in upland rice, cadmium (Cd) can easily enter the human food chain, which poses a global health threat considering nearly half of the human population depends on rice as a staple food source. A study was conducted to (1) evaluate Cd accumulation by rice cultivars, grown in Cd-polluted Tropical Oxisols, with different levels of Cd tolerance; (2) quantify Cd transfer from soil to rice shoots and grain; and (3) estimate daily Cd intake by humans. Three rice cultivars, characterized by low (Cateto Seda-CS), medium (BRSMG Talento-BT), and high (BRSMG Caravera-BC) Cd uptake capacity, were investigated. Rice cultivars were exposed to increasing soil Cd concentrations (0.0, 0.7, 1.3, 3.9, 7.8, and 11.7 mg kg-1). Analysis was performed on soil, shoots, and grain. Shoot biomass and grain yield decreased with increasing Cd supply, suggesting the following Cd tolerance: CS > BT > BC. Cadmium concentrations in shoots and grain increased when exposed to Cd. Only CS did not exceed the maximum Cd limit permitted in food (0.40 mg kg-1), when rates up to 1.3 mg kg-1 of Cd were applied to soil. Considering daily rice consumption levels in Brazil, Cd intake often exceeds maximum tolerable levels. Continuous monitoring of soil Cd concentrations is a pivotal step in avoiding hazards to humans. Such monitoring is important on a global scale since outside of Asia, Brazil is the leading rice-producing and rice-consuming country.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Monitoramento Ambiental , Humanos , Solo , Poluentes do Solo/análise
6.
Front Plant Sci ; 12: 717219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721451

RESUMO

Cowpea [Vigna unguiculata (L.) Walp] is cultivated in tropical and subtropical regions worldwide, but its production is usually limited by boron (B) deficiency, which can be mitigated by applying B via foliar spraying. In plants with nutrient mobility, the residual effect of foliar fertilization increases, which might improve its efficiency. An experiment was carried out to evaluate the concentration and mobility of the B isotopic tracer (10B) in different organs of cowpea plants, after the application of this micronutrient in the growing media and also to leaves. Treatments were designed based on B fertilization as follows: without B in the growth media, with 10B applied via foliar spraying (10B-L), with B in the growth media (substrate) and 10B via foliar spraying (10B-L + B-S), and with 10B in the growth media (substrate) without foliar spraying (10B-S), and a control without fertilization. A redistribution of 10B was observed in new leaves when the element was supplied via foliar spraying, resulting in greater leaf area, dry mass and dry matter production of aerial parts, and also the whole plant. 10Boron was redistributed when applied via foliar spraying in cowpea plants, regardless of the plant's nutritional status, which in turn might increase internal B cycling.

7.
Microorganisms ; 9(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206387

RESUMO

Squash mosaic virus (SqMV) is a phytovirus that infects great diversity of plants worldwide. In Brazil, the SqMV has been identified in the states of Ceará, Maranhão, Piauí, Rio Grande do Norte, and Tocantins. The presence of non-pathogenic viruses in animals, such as phytoviruses, may not be completely risk-free. Similarities in gene repertories between these viruses and viruses that affect animal species have been reported. The present study describes the fully sequenced genomes of SqMV found in human feces, collected in Tocantins, and analyzes the viral profile by metagenomics in the context of diarrhea symptomatology. The complete SqMV genome was obtained in 39 of 253 analyzed samples (15.5%); 97.4% of them belonged to children under 5 years old. There was no evidence that the observed symptoms were related to the presence of SqMV. Of the different virus species detected in these fecal samples, at least 4 (rotavirus, sapovirus, norovirus, parechovirus) are widely known to cause gastrointestinal symptoms. The presence of SqMV nucleic acid in fecal samples is likely due to recent dietary consumption and it is not evidence of viral replication in the human intestinal cells. Identifying the presence of SqMV in human feces and characterization of its genome is a relevant precursor to determining whether and how plant viruses interact with host cells or microorganisms in the human gastrointestinal tract.

8.
Plant Cell Environ ; 44(9): 2938-2950, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033133

RESUMO

Fertilization is commonly used to increase growth in forest plantations, but it may also affect tree water relations and responses to drought. Here, we measured changes in biomass, transpiration, sapwood-to-leaf area ratio (As :Al ) and sap flow driving force (ΔΨ) during the 6-year rotation of tropical plantations of Eucalyptus grandis under controlled conditions for throughfall and potassium (K) fertilization. K fertilization increased final tree height by 8 m. Throughfall exclusion scarcely affected tree functioning because of deep soil water uptake. Tree growth increased in K-supplied plots and remained stable in K-depleted plots as tree height increased, while growth per unit leaf area increased in all plots. Stand transpiration and hydraulic conductance standardized per leaf area increased with height in K-depleted plots, but remained stable or decreased in K-supplied plots. Greater Al in K-supplied plots increased the hydraulic constraints on water use. This involved a direct mechanism through halved As :Al in K-supplied plots relative to K-depleted plots, and an indirect mechanism through deteriorated water status in K-supplied plots, which prevented the increase in ΔΨ with tree height. K fertilization in tropical plantations reduces the hydraulic compensation to growth, which could increase the risk of drought-induced dieback under climate change.


Assuntos
Eucalyptus/metabolismo , Fertilizantes , Agricultura Florestal/métodos , Potássio/farmacologia , Árvores/metabolismo , Água/metabolismo , Biomassa , Eucalyptus/efeitos dos fármacos , Eucalyptus/fisiologia , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Árvores/efeitos dos fármacos , Árvores/fisiologia , Xilema/metabolismo
9.
Ecotoxicol Environ Saf ; 170: 578-589, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576893

RESUMO

Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 µmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.


Assuntos
Antioxidantes/metabolismo , Cádmio/metabolismo , Lactuca , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/metabolismo , Cádmio/toxicidade , Genótipo , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Lactuca/ultraestrutura , Estresse Oxidativo/genética , Poluentes do Solo/toxicidade , Especificidade da Espécie
10.
Sci Total Environ ; 655: 1457-1467, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577137

RESUMO

Sewage sludge (SS) reuse in forest plantation as soil fertilizer/amendment has tremendously increased in recent years. However, SS may have high concentrations of potentially toxic elements (PTE), representing a potential risk for soil and the whole ecosystem. This paper was aimed to assess the toxicity of PTE in unfertile tropical soils amended with SS in a commercial Eucalyptus plantation, with an integrated multiple approaches combining: i) the use of a battery of bioassays (Daphnia magna, Pseudokcrichirella subcapitata, Lactuca sativa, and Allium cepa); and ii) the evaluation of some PTE (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their availability into the pedoenvironment. Differences in total and available PTE between SS doses and time of treatments were evaluated using ANOVA; correlations between PTE and bioassays by a sparse partial robust M-regression (SPRM), while multiple correlations among parameters were performed by principal factor analysis (PFA). Results show that PTE contents in soils tended to increase with SS application doses. However this cannot be assumed as a general rule since in all the investigated treatments the PTE concentrations were consistently below both soil natural background concentrations and quality reference values. Bioassays showed a generalized low eco- and genotoxicity of SS with an increase in toxicity at increasing SS doses but with a clear decreasing trend as time went by. A. cepa was the most sensitive bioassay followed by P. subcapitata > D. magna > L. sativa. Overall, the results indicate that in realistic open field conditions SS risk may be lower than expected due to dynamic decrease in PTE toxicity with time after application. This study has an important implication that open-field trials should be strongly encouraged for evaluating environmental risk of SS application in forestry.


Assuntos
Eucalyptus/efeitos dos fármacos , Fertilizantes/análise , Esgotos/efeitos adversos , Poluentes do Solo/toxicidade , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/fisiologia , Agricultura Florestal , Solo/química
11.
J Environ Manage ; 221: 10-19, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29787968

RESUMO

Quality reference values (QRV) for potentially toxic elements (PTE) in soils are established as a tool for prevention and monitoring of soil pollution. These values should be periodically revised in order to ensure soil safety for agricultural purposes. Brazil is market leader for several commodities; therefore, the safety of Brazilian soils is of worldwide strategic importance. The objective of this study was to determine the natural background concentrations and the QRV for As, Ba, Cd, Cr, Ni, Pb, Se, and Zn by investigating 30 representative pedotypes in the São Paulo State, one of the most important agro-industry economy at worldwide level. Multivariate statistical analysis was applied to determine the sources of PTE and their variability. The mean natural background concentrations of PTE in the soils were generally lower to those reported in literature. QRV, calculated for each element as the 75th and 90th percentiles, were lower (75th for As, Cd, Pb, and Zn), similar (75th for Ba, Cr, and Se) or above (90th for Ba, Cr, and Se and 75-90th for Ni) those previously proposed by the Brazilian environmental protection agencies. The results indicate that 75th percentile may be too restrictive. The PTE in the investigated soils appear to have comes mainly from two primary natural sources: a prevalent one of geogenic and a secondary of pedogenic origin. These results confirm the predominant natural source of selected PTE in the investigated soils, thus sustaining the possibility of using the data set to develop QRV for the State of São Paulo.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Brasil , Monitoramento Ambiental , Valores de Referência , Solo
12.
J Environ Manage ; 203(Pt 1): 51-58, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778005

RESUMO

Fertilization of Eucalyptus plantations using sewage sludge on unfertile tropical soils represents an alternative to using mineral N and P fertilizers. A 44-month field experiment was conducted to study the effects of increasing application of sludge, and its interactions with mineral N and P fertilizers, on wood volume. Four rates of sludge (0, 8, 15 and 23 Mg ha-1, dry base), N (0, 47, 95 and 142 kg ha-1) and P (0, 28, 56 and 84 kg ha-1 of P2O5) were combined in a 4 × 4 × 4 factorial scheme in a totally randomized block design. Response surface and age-shift modeling was used to establish an initial recommendation for mineral fertilization of the Eucalyptus plantations treated with sludge and to analyze the implications of increased growth on the duration of the forest cycle in a tropical climate. The results showed that from 8 to 44 months after planting, the sludge application (with or without N and P) yielded a statistically larger wood volume (P < 0.05), compared to application of N and P fertilizers only. The response surface modeling showed the following outcomes: i) application of sludge based on N criterion reduced the need for N and P fertilizers by 100%; and ii) an increase in wood volume by 7% could be achieved, compared to NPK fertilizers only, if 2/3 of the recommended P was applied. The cultivation time to produce 150 m3 ha-1 of wood volume was 45 months for the control and was reduced by two, three, four, or five months, respectively, through application of recommended P, sludge dose, sludge plus one third of P, and sludge plus two thirds of P. On the whole, sewage sludge could represent an excellent unconventional N and P fertilizer source for wood production on unfertile tropical soils.


Assuntos
Eucalyptus , Fertilizantes , Esgotos , Solo , Madeira
13.
Environ Monit Assess ; 188(3): 163, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26879984

RESUMO

Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.


Assuntos
Metais Pesados/análise , Saccharum/química , Solo/química , Agricultura , Monitoramento Ambiental , Micronutrientes/análise , Folhas de Planta/química , Esgotos/análise , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos , Zinco/análise
14.
PLoS One ; 10(3): e0116903, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751056

RESUMO

The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.


Assuntos
Citrus/crescimento & desenvolvimento , Fertilizantes/análise , Zinco/metabolismo , Citrus/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , Folhas de Planta/química , Solo/química , Zinco/análise , Zinco/química , Isótopos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA