Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9043, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641641

RESUMO

To aid in the creation of sustainable structures, scientists have utilized waste materials found in the environment to serve as alternatives for traditional resources in the construction sector. They have undertaken extensive investigations pertaining to this matter. In this particular study, tempered glass as waste glass coarse aggregate (WGCA) was substituted for natural coarse aggregate (NCA) at varying proportions of 15%, 30%, and 45% in the formulation of eco-friendly self-compacting concrete (SCC), combined with hooked-end steel fibers (SFs) at various volumes. The study assessed concrete's flowability, permeability, compressive strength, and fracture parameters at 28 and 56 days. A total of 240 edge-notched disc bending samples (ENDB) and 60 cubic samples (150 × 150 mm) were tested to assess fracture resilience and compressive strength, respectively. The results showed that increasing SF and WGCA content reduced slump flow diameter and blockage ratio, particularly at higher levels. The solidified characteristics of all specimens incorporating SF and WGCA displayed heightened attributes when contrasted with the reference sample. Among the entire array of specimens, WG15SF0.5 and WG30SF0.5 exhibited the most superior performance, demonstrating an average percentage elevation of 20.29 and 27.63 in both compressive strength and fracture toughness assessments across the different curing periods. SF had the most significant impact on post-cracking behavior by enhancing load-bearing capacity through a bridging fiber mechanism. Through a comparison of the influence of SFs and WGCA on the fracture toughness of pure mode III, it was observed that the inclusion of SF in samples with a 30% replacement of WGCA resulted in an average increase of approximately 15.48% and 11.1% in this mode at the ages of 28 and 56 days, respectively, compared to the control sample.

2.
Sci Rep ; 12(1): 14524, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008572

RESUMO

Volcanic ashes (VA) are one of the by-products of explosive volcanic eruptions. They can be used as a soil stabilizer due to their cementitious properties as an eco-friendly soil stabilization approach. In this study, the impact of VA as an additive material (up to 20%) was investigated on the behavior of a clayey soil under one-dimensional compression tests and uniaxial compression tests. To this aim, the VA percentage effect, curing conditions, i.e. the optimum moisture content (OMC) and saturated sample, and curing time, on the oedometer modulus, and the uniaxial compression strength (UCS) are investigated. Results show that the addition of VA increases the UCS continuously in saturated conditions. However, this improvement is considerable for 5% additional VA at the OMC state and it induces 325% improvement in UCS. The maximum improvement of UCS occurs at 20% addition of VA in saturated condition. It was also revealed that VA-soil mixtures are more sustainable at low stress levels and the oedometer modulus increases with the VA addition. A long-term curing time leads to an increase of the fabricated bonds due to the pozzolanic reaction. Additional VA has no significant effect on the consolidation parameters specifically for short-term curing time.

3.
Sci Rep ; 10(1): 11357, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647281

RESUMO

Ground deformation can cause serious environmental issues such as infrastructure damage, ground compaction, and reducing the ground capacity to store water. Mashhad, as one of the largest and most populated cities in the Middle East, has been suffering from extreme subsidence. In the last decade, some researchers have been interested in measuring land subsidence rates in the Mashhad valley by InSAR techniques. However, most of those studies were based on inaccurate measurements introducing uncertainties in the resulting subsidence rates. These researches used a small number of EnviSat data with long perpendicular and inhomogeneous temporal baseline. This paper seeks to determine the subsidence rate in urban areas of Mashhad in recent years, the threat that was neglected by the city managers and decision-makers. For this purpose, the Persistent Scatterer InSAR technique was applied in the study area using two time-series of descending and ascending Sentinel-1A acquisitions between 2014 and 2017. The results demonstrated the maximum line-of-sight deformation rate of 14.6 cm/year and maximum vertical deformation (subsidence) rate about 19.1 cm/year which could have irreversible consequences. The results were assessed and validated using piezometric data, GPS stations, and geotechnical properties. This assessment confirms that the main reason for subsidence in the interested area is groundwater over-extraction. Also, investigation of geotechnical properties shows that thick fine-grained layers in the northwest of the city could strongly affect the results. At the end of this paper, a new simplified method was proposed to estimate specific storage in special cases to predict the subsidence rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA