Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500372

RESUMO

Novel semisynthetic coumarin derivatives were synthesized to be developed as chemotherapeutic anticancer agents through topoisomerase II, VEGFR2 inhibition that leads to apoptotic cancer cell death. The coumarin amino acids and dipeptides derivatives were prepared by the reaction of coumarin-3-carboxylic acid with amino acid methyl esters following the N,N-dicyclohexylcarbodiimide (DCC) method and 1-hydroxy-benzotriazole (HOBt), as coupling reagents. The synthesized compounds were screened towards VEGFR2, and topoisomerase IIα proteins to highlight their binding affinities and virtual mechanism of binding. Interestingly, compounds 4k (Tyr) and 6c (ß-Ala-L-Met) shared the activity towards the three proteins by forming the same interactions with the key amino acids, such as the co-crystallized ligands. Both compounds 4k and 6c exhibited potent cytotoxic activities against MCF-7 cells with IC50 values of 4.98 and 5.85 µM, respectively causing cell death by 97.82 and 97.35%, respectively. Validating the molecular docking studies, both compounds demonstrated promising VEGFR-2 inhibition with IC50 values of 23.6 and 34.2 µM, compared to Sorafenib (30 µM) and topoisomerase-II inhibition with IC50 values of 4.1 and 8.6 µM compared to Doxorubicin (9.65 µM). Hence, these two promising compounds could be further tested as effective and selective target-oriented active agents against cancer.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/química , Cumarínicos/farmacologia , Aminoácidos/farmacologia , Estrutura Molecular , Proliferação de Células , Desenho de Fármacos
2.
RSC Adv ; 12(6): 3274-3286, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425388

RESUMO

A well-defined heterojunction among two dissimilar semiconductors exhibited enhanced photocatalytic performance owing to its capability for boosting the photoinduced electron/hole pair transportation. Therefore, designing and developing such heterojunctions using diverse semiconductor-based materials to enhance the photocatalytic ability employing various approaches have gained research attention. For this objective, g-C3N4 is considered as a potential photocatalytic material for organic dye degradation; however, the rapid recombination rate of photoinduced charge carriers restricts the widespread applications of g-C3N4. Henceforth, in the current study, we constructed a heterojunction of S-g-C3N4/Cu-NiS (SCN/CNS) two-dimensional/one-dimensional (2D/1D) binary nanocomposites (NCs) by a self-assembly approach. XRD results confirm the construction of 22% SCN/7CNS binary NCs. TEM analysis demonstrates that binary NCs comprise Cu-NiS nanorods (NRs) integrated with nanosheets (NSs) such as the morphology of SCN. The observed bandgap value of SCN is 2.69 eV; nevertheless, the SCN/CNS binary NCs shift the bandgap to 2.63 eV. Photoluminescence spectral analysis displays that the electron-hole pair recombination rate in the SCN/CNS binary NCs is excellently reduced owing to the construction of the well-defined heterojunction. The photoelectrochemical observations illustrate that SCN/CNS binary NCs improve the photocurrent to ∼0.66 mA and efficiently suppress the electron-hole pairs when compared with that of undoped NiS, CNS and SCN. Therefore, the 22% SCN/7CNS binary NCs efficiently improved methylene blue (MB) degradation to 99% for 32 min under visible light irradiation.

3.
Chemosphere ; 262: 128058, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182140

RESUMO

Owing to the superlative properties, engineered nanomaterials (ENM) are being used in food, cosmetics, medicine, and electronics. Therefore, exogenous ENM can be housed into humans through a multitude of exposure routes, leading to compromise of the biomolecules' functionalities through structural deformations, and even at the metabolic level. Consequently, it is of great importance to understand the perturbations introduced at the metabolic level for the timely risk assessment (RA) of ENM. Current technological advancements in metabolomics empower us to visualize the metabolic dysregulations in biological cells, tissues, and living objects, instigated by the ENM. Given the fact, we propose multitiered untargeted metabolomics for the risk assessment of ENM. We propose largely validated experimental design principles that enable the well-organized and authentic identification of metabolic dysregulation connected with a newly engineered nanomaterial. Our scheme could participate in the enhanced transparency of the RA course of rapidly emerging ENM.


Assuntos
Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Nanoestruturas , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanotecnologia , Medição de Risco , Transdução de Sinais
4.
Int J Biol Macromol ; 165(Pt A): 402-435, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007321

RESUMO

Chitosan is an important polymer produced from deacetylation of several sea and insects crusts. Due to its environmental fate and biological biocompatibility, it can be used in several biological and environmental applications. Sensing of biological compounds in human bodies and also in serum, blood, and different body fluids has found an important application instead of direct determination of the body fluids using complicated tools. Sensing process of biological compounds during bio-analysis of the biological systems, especially human fluids lack of several parameters including: high sensitivity, repeatability, speed of analysis and biocompatibility of the used analytical methods, especially in-vivo analysis. That was due to the time between sample handling and sample determination can change various components and concentrations of the bio-compounds. The need for in-situ analysis was directed the researchers for biosensors to overcome the upgrading problems of bio-analysis. Biosensors were the future of this issue. Chitosan can reserve as great platform for fabrication of different sensors to determine the elements, compounds and body bioactive compounds. The presence of different terminal amino and hydroxyl groups within chitosan framework facilitates the immobilization of different biomarkers to be used as sensing elements for the determined compounds. The use of chitosan as sensors platform was enhanced by using chitosan in its nanoforms.


Assuntos
Técnicas Biossensoriais , Quitosana/química , Técnicas Eletroquímicas , Nanocompostos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA