Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 40(5): e3816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523567

RESUMO

Alzheimer's disease (AD) levels have increased globally, which is considered the sixth reason for deaths. So, a requirement exists for economic and quantitative methods to follow up the gradual progression of AD. The current study presents a simulation for a non-irradiated, safe, wearable, and noninvasive mobile approach for detecting the progression of Alzheimer's brain atrophy using the optical diffusion technique and for investigating the difference between the normal and the diseased brain. The virtual study was accomplished using COMSOL Multiphysics. The simulated head is implemented as the following: scalp, skull, cerebrospinal fluid, gray matter, and white matter. The optical properties of the heterogeneous tissue are observed using the fluence rate after irradiating the head with different wavelengths (630, 700, 810, 915, and 1000 nm) of lasers. Two assessment techniques were applied to evaluate the brain atrophy measurements; the first technique was an array of photodetectors, which were lined at the head posterior, while a matrix of photodetectors was applied over the head surface in the second technique. The results show that the surface photodetectors approach differentiates the normal from AD brains without measuring the brain atrophy percentages by applying 630 nm. The array of photodetectors distinguishes normal from AD brains without detecting the brain atrophy percentages when the wavelengths 630, 700, and 810 nm were applied. The line detector at 1000 nm evaluates the brain atrophy percentages with AD. The future explores applying those techniques in vivo and analyzing the information by the spectrometer for extensively safer early detection of neural disorders.


Assuntos
Doença de Alzheimer , Progressão da Doença , Lasers , Humanos , Encéfalo/patologia , Atrofia , Substância Cinzenta/patologia
2.
Lasers Med Sci ; 38(1): 37, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627516

RESUMO

Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells' surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.


Assuntos
Quitosana , Neoplasias do Colo , Nanopartículas , Humanos , Extratos Vegetais , Corantes , Nanopartículas/química , Neoplasias do Colo/radioterapia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Fluoresc ; 32(3): 949-960, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166972

RESUMO

Nanomedicine and fluorescent optical imaging are effective in early cancer detection. The current study synthesized biocompatible nanocomposites from natural biomaterials towards inexpensive and safe cancer theragnostic. Two forms of nanocomposites were synthesized using the ionic gelation method: 1. Chitosan/ Withania Somnifera /tripolyphosphate nanocomposites, 2. Withania Somnifera/Chitosan nanocomposites. The nanocomposites were characterized by dynamic light scattering, zeta potential, and the transmission electron microscope. Fourier transform infrared spectroscopy analyzed the Withania Somnifera root water extract, Chitosan, and the synthesized nanocomposites. The cytotoxicity of the nanocomposites was investigated against the colon cancer cells (Caco2 cells) in the absence and the presence of laser (665 nm, 5 mW) irradiation. MTT assay evaluated the cytotoxicity, and Trypan blue assay assessed the cell viability. Cancerous cells were photographed under the inverted microscope in the presence and the absence of laser irradiation. Results were analyzed statistically using one-way variance (ANOVA) analysis with Bonferroni post-Hoc multiple two-group comparisons. The characterization results ensured the successful synthesis of Withania Somnifera/Chitosan nanocomposites. The results showed an increase in the cytotoxicity against colon carcinoma and a decrease in cell viability in the presence and absence of Near-infrared laser irradiation under the action of nanocomposites. The cytotoxicity of the synthesized nanocomposites increased by exposing the cells to the laser. The shining light of the nanocomposites appeared on the cells photographed under the inverted microscope. The synthesized natural nanocomposites promise systemic cytotoxicity will be efficient in molecular imaging in vivo applications.


Assuntos
Quitosana , Nanocompostos , Neoplasias , Withania , Células CACO-2 , Quitosana/química , Meios de Contraste , Humanos , Nanocompostos/química , Extratos Vegetais , Withania/química
4.
Biosensors (Basel) ; 9(1)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781627

RESUMO

Chitosan-tripolyphosphate nanoparticles (C-TPP NPs) were synthesized to investigate their cytotoxicity against colon cancer cells (Caco2 cells) in the absence and the presence of a near-infrared (NIR) laser to evaluate their influence in cancer detection using the NIR laser and to evaluate the NIR laser on cancer treatment. The synthesized NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential (ZP), and transmission electronic microscope (TEM). The cytotoxicity was analyzed by the MTT test and the cell viability was assessed using the Trypan blue method. C-TPP NPs showed increased cytotoxicity and decreased cell viability against Caco2 cells. Upon laser exposure only, the cell viability decreased. The C-TPP NPs appeared to have a shining light on the cancerous cells which were photographed under the inverted microscope.


Assuntos
Quitosana/química , Lasers , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Espectroscopia de Luz Próxima ao Infravermelho , Células CACO-2 , Sobrevivência Celular , Química Verde , Humanos , Concentração Inibidora 50 , Nanopartículas/ultraestrutura , Neoplasias/patologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA