Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Infect Drug Resist ; 17: 2289-2298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860227

RESUMO

Introduction: Candida is the primary cause of invasive fungal disease, candidiasis, especially in developed nations. The increasing resistance observed in multiple antibiotics, coupled with the prolonged process of creating new antibiotics from the ground up, emphasizes the urgent requirement for innovative methods and new compounds to combat Candida infections. Employing a treatment strategy that combines antibiotics can improve efficacy, broaden the spectrum of targeted fungal, and reduce the chances of resistance emergence. This approach shows potential in tackling the escalating problem of antibiotic resistance. The objective of this research is to explore the potential synergistic effects of combining 3-hydrazinoquinoxaline-2-thiol and thymoquinone against a variety of Candida isolates. This investigation aims to offer an understanding of the collective antimicrobial action of these compounds. Methods: Broth microdilution was utilized to assess the Minimum Inhibitory Concentrations (MICs) of 3-hydrazinoquinoxaline-2-thiol and thymoquinone for 22 clinical Candida isolates. Following this, a checkerboard assay was employed to analyze the interaction between 3-hydrazinoquinoxaline-2-thiol and thymoquinone, with a specific focus on the Fractional Inhibitory Concentration Index (FICI). Results: The MICs of thymoquinone and 3-hydrazinoquinoxaline-2-thiol were determined for 22 clinical Candida strains, with thymoquinone exhibiting MICs ranging from 64 to 8 µg/mL, and 3-hydrazinoquinoxaline-2-thiol displaying MICs varying from 64 to 8 µg/mL. Notably, the combination of 3-hydrazinoquinoxaline-2-thiol and thymoquinone resulted in a synergistic effect, leading to a significant reduction in MICs, with reductions of up to 64-fold with FICI below 0.5 against tested strains. Conclusion: The prospect of using 3-hydrazinoquinoxaline-2-thiol in combination with thymoquinone as an effective solution against Candida looks encouraging. Nevertheless, to validate its practical applicability, additional comprehensive testing and experiments are imperative.

2.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744725

RESUMO

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Endocanabinoides , Endocanabinoides/fisiologia , Endocanabinoides/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Animais , Humanos , Ratos , Receptores de Canabinoides/fisiologia , Camundongos , Criança
3.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447323

RESUMO

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Assuntos
Ácidos Hidroxâmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Arábia Saudita/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genômica , Testes de Sensibilidade Microbiana
4.
Mol Biol Rep ; 51(1): 429, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517566

RESUMO

Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.


Assuntos
Triticum , Água , Melhoramento Vegetal , Fenótipo , Secas
5.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371953

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

6.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250414

RESUMO

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

8.
Saudi J Biol Sci ; 31(1): 103871, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38107766

RESUMO

Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs. Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally, the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as anoikis, which is associated with ECM detachment. In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-resistant cancer cells. Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate pathway. Glutamate is crucial for maintaining a pool of reduced glutathione. Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase, lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells. Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate metabolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased ROS levels and triggering cell death in anoikis-resistant cancer cells.

9.
Anim Biotechnol ; 35(1): 2290520, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38100547

RESUMO

NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, ß-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of ß-lactamase genes in ß-lactam antibiotic-resistant bacterial infections.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Proteolipídeos , Animais , Bovinos , Humanos , Antibacterianos/farmacologia , Peptídeos/farmacologia , Peptídeos/química , beta-Lactamases/farmacologia , Escherichia coli , Antivirais
10.
J Infect Dev Ctries ; 17(10): 1420-1429, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37956366

RESUMO

INTRODUCTION: The World Health Organization (WHO) designated Carbapenem-resistant Enterobacterales (CRE), formerly Enterobacteriaceae, among the global priority list of antibiotic-resistant bacteria. The rate of CRE in Arabian countries, including Saudi Arabia has increased. Here, we report the prevalence of carbapenemase-producing Klebsiella pneumoniae (CPKP) in the Jazan region, a southern coastal province of Saudi Arabia. METHODOLOGY: Eighty-six non-repetitive clinical isolates of K. pneumoniae that showed resistance to at least one of the carbapenem drugs were collected from three tertiary hospitals in the Jazan region from March 2020 to April 2021. The identification and antimicrobial susceptibility testing (AST) of isolates were performed using various automated systems. Molecular detection of carbapenemase genes was conducted using a multiplex PCR. RESULTS: Out of the 86 tested CRKP isolates, 64 (74.4%) were carbapenemase-producing isolates. The blaOXA-48 gene was the most predominant carbapenemase gene, detected in 65.1% (n = 56) of isolates. The blaNDM gene was detected in only 9.3% (n = 8) of isolates; three were found to be co-harbored with blaVIM. Interestingly, one isolate of CRKP was found to have carbapenemase genes (blaNDM, blaVIM and blaKPC), which was associated with COVID-19 patient. CONCLUSIONS: The incidence of carbapenemase-producing K. pneumoniae in Jazan hospitals seemed to be high, confirming the continued prevalence of carbapenem resistance in Saudi Hospitals. We report K. pneumoniae strain with triple carbapenemase genes in southern Saudi Arabia. The emergence of such an isolate could threaten patients and healthcare workers and requires great attention to rapid interventions to avoid further dissemination, particularly during the COVID-19 pandemic.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Gammaproteobacteria , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Arábia Saudita/epidemiologia , Prevalência , Pandemias , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Centros de Atenção Terciária , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia
11.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894386

RESUMO

Colorectal cancer (CRC) is a significant global health concern. Microbial dysbiosis and associated metabolites have been associated with CRC occurrence and progression. This study aims to analyze the gut microbiota composition and the enriched metabolic pathways in patients with late-stage CRC. In this study, a cohort of 25 CRC patients diagnosed at late stage III and IV and 25 healthy participants were enrolled. The fecal bacterial composition was investigated using V3-V4 ribosomal RNA gene sequencing, followed by clustering and linear discriminant analysis (LDA) effect size (LEfSe) analyses. A cluster of ortholog genes' (COG) functional annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to identify enrichment pathways between the two groups. The findings showed that the fecal microbiota between the two groups varied significantly in alpha and beta diversities. CRC patients' fecal samples had significantly enriched populations of Streptococcus salivarius, S. parasanguins, S. anginosus, Lactobacillus mucosae, L. gasseri, Peptostreptococcus, Eubacterium, Aerococcus, Family XIII_AD3001 Group, Erysipelatoclostridium, Escherichia-Shigella, Klebsiella, Enterobacter, Alistipes, Ralstonia, and Pseudomonas (Q < 0.05). The enriched pathways identified in the CRC group were amino acid transport, signaling and metabolism, membrane biogenesis, DNA replication and mismatch repair system, and protease activity (Q < 0.05). These results suggested that the imbalance between intestinal bacteria and the elevated level of the predicated functions and pathways may contribute to the development of advanced CRC tumors. Further research is warranted to elucidate the exact role of the gut microbiome in CRC and its potential implications for use in diagnostic, prevention, and treatment strategies.

12.
Front Mol Biosci ; 10: 1190669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255540

RESUMO

The use of oncolytic viruses (OVs) in combination with cytokines, such as IL-12, is a promising approach for cancer treatment that addresses the limitations of current standard treatments and traditional cancer immunotherapies. IL-12, a proinflammatory cytokine, triggers intracellular signaling pathways that lead to increased apoptosis of tumor cells and enhanced antitumor activity of immune cells via IFN-γ induction, making this cytokine a promising candidate for cancer therapy. Targeted expression of IL-12 within tumors has been shown to play a crucial role in tumor eradication. The recent development of oncolytic viruses enables targeted delivery and expression of IL-12 at the tumor site, thereby addressing the systemic toxicities associated with traditional cancer therapy. In this study, we constructed an oncolytic virus, VSVΔ51M, based on the commercially available VSV wild-type backbone and further modified it to express human IL-12. Our preclinical data confirmed the safety and limited toxicity of the modified virus, VSV-Δ51M-hIL-12, supporting its potential use for clinical development.

13.
Infect Drug Resist ; 16: 2291-2296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095779

RESUMO

Background: While the frequency of methicillin-resistant Staphylococcus aureus (MRSA) continues to rise globally, there is a fear regarding an increase in vancomycin resistance among S. aureus strains. As far back as the 1960s, MRSA was one of the world's most prevalent antibiotic-resistant bacteria. Among hospitalized patients and community members, MRSA is the cause of a significant number of infections. As a result of its resistance to classical beta-lactam and, in some cases, vancomycin antibiotics, efforts must be made as soon as feasible to find a new approach to fighting MRSA. Purpose: This study is designed to evaluate the antibacterial activity of quinoxaline derivative compound against MRSA in comparison with vancomycin as a reference drug. Methods: Sixty MRSA isolates were subjected to susceptibility testing by broth microdilution method for quinoxaline derivative compound and vancomycin. Each drug's minimal inhibitory concentration (MIC) was determined and compared. Results: Among the sixty MRSA isolates, most of the quinoxaline derivative compound MIC findings (56.7%) were 4 µg/mL compared to vancomycin MIC values (63.3%) of 4 µg/mL. In comparison, 20% of quinoxaline derivative compound MIC readings were 2 µg/mL, while the vancomycin MIC results were 6.7%. However, the overall proportion of MIC readings at ≤2 µg/mL for both antibacterial agents was equal (23.3%). None of the isolates were resistant to vancomycin. Conclusion: This experiment revealed that most MRSA isolates were associated with low MICs (1-4 µg/mL) for quinoxaline derivative compound. Overall, the susceptibility of the quinoxaline derivative compound signifies a promising efficacy against MRSA and may set a novel treatment approach.

14.
Genes (Basel) ; 14(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36833437

RESUMO

(1) Background: Dyggve-Melchior-Clausen Syndrome is a skeletal dysplasia caused by a defect in the DYM gene (OMIM number 607461). Pathogenic variants in the gene have been reported to cause Dyggve-Melchior-Clausen (DMC; OMIM 223800) dysplasia and Smith-McCort (SMC; OMIM 607326) dysplasia. (2) Methods: In the present study, large consanguineous families with five affected individuals with osteochondrodysplasia phenotypes were recruited. The family members were analyzed by polymerase chain reaction for homozygosity mapping using highly polymorphic microsatellite markers. Subsequent to linkage analysis, the coding exons and exon intron border of the DYM gene were amplified. The amplified products were then sent for Sanger sequencing. The structural effect of the pathogenic variant was analyzed by different bioinformatics tools. (3) Results: Homozygosity mapping revealed a 9 Mb homozygous region on chromosome 18q21.1 harboring DYM shared by all available affected individuals. Sanger sequencing of the coding exons and exon intron borders of the DYM gene revealed a novel homozygous nonsense variant [DYM (NM_017653.6):c.1205T>A, p.(Leu402Ter)] in affected individuals. All the available unaffected individuals were either heterozygous or wild type for the identified variant. The identified mutation results in loss of protein stability and weekend interactions with other proteins making them pathogenic (4) Conclusions: This is the second nonsense mutation reported in a Pakistani population causing DMC. The study presented would be helpful in prenatal screening, genetic counseling, and carrier testing of other members in the Pakistani community.


Assuntos
Nanismo , Deficiência Intelectual , Osteocondrodisplasias , Humanos , Osteocondrodisplasias/genética , Peptídeos e Proteínas de Sinalização Intracelular , Nanismo/genética , Deficiência Intelectual/genética
15.
J Med Virol ; 95(1): e28412, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527332

RESUMO

Considering the global trend to confine the COVID-19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS-CoV-2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID-19 patients. This study was a single-center, randomized, double-blind, six-parallel-group, placebo-controlled clinical trial that investigated the effect of four mouth rinses (1% povidone-iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS-CoV-2 viral load relative to the distilled water and no-rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT-qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone-iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no-rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no-rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk-mitigation step before dental procedures, along with strict adherence to other infection control measures.


Assuntos
COVID-19 , Antissépticos Bucais , Humanos , Antissépticos Bucais/uso terapêutico , SARS-CoV-2 , Peróxido de Hidrogênio , Povidona-Iodo/uso terapêutico , Cetilpiridínio/uso terapêutico , Pandemias , Carga Viral , Água
16.
Anim Biotechnol ; 34(7): 3108-3125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309816

RESUMO

The current study aimed to investigate the potentiality of using avian ß-defensin-1 peptide as a candidate agent against coccidiosis infection in broiler chicken.We employed an in-silico analysis to study the primary structure of ß-defensin-1 peptide as well as its 3-D and molecular dynamic structures. This will also enable obtaining adequate information about the mode of action of these peptides and the intra-cellular transduction pathways. The results revealed no significant difference among groups of broiler chicken in terms of body weight before the Eimeria challenge.The results of our study indicated a significant reduction in oocyst count in birds administered ß-defensin-1 peptide treatment, vis-a-vis healthy birds. The treated group showed a 2-3 times reduction in oocyst count, compared to the positive control group. The Eimeria oocysts count evaluated for birds administered with ß-defensin-1 after the Eimeria challenge showed a significant difference. The study indicated significant reduction and down-regulation in the level of expression of ß-defensin 1 and 4 in the control and treatment groups.This electrostatic profile and hydrophobicity regulate the functioning of this peptide. The results may help in the development of novel approaches that could be used as alternatives or adjunct to the existing means of coccidiosis control in broilers.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , beta-Defensinas , Animais , Galinhas , beta-Defensinas/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Oocistos
17.
Nanomaterials (Basel) ; 12(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234586

RESUMO

The ability and potency of bacterial species to form biofilms, which show antibiotic resistance thereby avoiding antibiotic surfaces, is a major cause of prolonged infections. Various advanced approaches have been employed to prevent or damage bacterial biofilms, formed by a variety of bacterial strains, to help prevent the associated infectious disease. In this context, zinc-based nanostructures have been recognized as a potential antibiotic agent against a broad spectrum of bacterial communities. As a result, a sustainable and green synthesis method was adapted in the present study to synthesize a Zn(OH)2/ZnO-based bionanocomposite, in which aqueous extracts of waste pomegranate peels (Punica granatum) were employed as a natural bioreducing agent to prepare the bionanocomposite at room temperature. Furthermore, FT-IR, XRD, DLS, UV-Visible, PL spectroscopy, FE-SEM, and TEM were used to characterize the green route synthesized a Zn(OH)2/ZnO bionanocomposite. The average crystallite size was determined using the Scherrer relation to be 38 nm, and the DLS results indicated that the Zn(OH)2/ZnO bionanocomposite had a hydrodynamic size of 170 nm. On the other hand, optical properties investigated through UV-Vis and PL spectroscopy explored the energy bandgap between 2.80 and 4.46 eV, corresponding to the three absorption edges, and it covered the blue spectrum when the sample was excited at 370 nm. Furthermore, the impact of this green route synthesized a Zn(OH)2/ZnO bionanocomposite on the biofilm degradation efficiency of the pathogenic bacterial strain Bacillus subtilis PF_1 using the Congored method was investigated. The Congored assay clearly explored the biofilm degradation efficiency in the presence of a 50 mg/mL and 75 mg/mL concentration of the Zn(OH)2/ZnO bionanocomposite against the bacterial strain Bacillus subtilis PF_1 grown for 24 h. This study can be further applied to the preparation of bionanocomposites following a low-cost green synthesis approach, and thus prepared nanostructures can be exploited as advanced antimicrobial agents, which could be of great interest to prevent various infectious diseases.

18.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234860

RESUMO

Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund's Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1ß, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.


Assuntos
Apocynaceae , Artrite Experimental , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/patologia , Proteína C-Reativa , Catalase , Ciclo-Oxigenase 2 , Flavonoides/uso terapêutico , Adjuvante de Freund , Interleucina-10 , Interleucina-4 , Interleucina-6 , Metotrexato/uso terapêutico , NF-kappa B , Extratos Vegetais/uso terapêutico , Ratos , Fator Reumatoide , Superóxido Dismutase/uso terapêutico , Fator de Necrose Tumoral alfa , Água
19.
Environ Res ; 215(Pt 2): 114292, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100106

RESUMO

At present, development and production of advanced green energy sources are highly demanded, and this may offer a clean and sustainable environment to our modern society. In this reference, biogas is emerging as a promising green energy source and seems to have high potential to replace fossil-fuel based energy sources in the coming future. Further, lignocellulosic biomass (LCB) based biogas production technology has been found to be highly promising owing to several advantages associated therewith. Rich inorganic content, renewable nature, huge availability and low-cost are the key beneficial factors of LCB-based feedstock l to produce biogas. Among the varieties of LCB, paddy straw is one of the most demanding feedstocks and is highly rich in organic compounds that are imperative to producing biogas. Nevertheless, it is noticed that paddy straw as a waste material is usually disposed-off by direct burning, whereas it exhibits low natural digestibility due to the presence of high lignin and silica content which causes severe environmental pollution. On the other hand, paddy straw can be a potential feedstock to produce biogas through anaerobic digestion. Therefore, based on the current ongoing research studies worldwide, this review evaluates the advancements made in the AD process. Meanwhile, existing limitations and future recommendations to improve the yield and productivity of the biogas using paddy straw have been discussed. The emphasis has also been given to various operational parameters developments, related shortcomings, and strategies to improve biogas production at pilot scale.


Assuntos
Biocombustíveis , Lignina , Anaerobiose , Combustíveis Fósseis , Dióxido de Silício
20.
Biotechnol Genet Eng Rev ; : 1-22, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123822

RESUMO

Bacterial co-infections are typically associated with viral respiratory tract infections and pose a significant public health problem around the world. COVID-19 infection damages tissues lining the respiratory track and regulates immune cells/cytokines leading to microbiome dysbiosis and facilitating the area to be colonized by pathogenic bacterial agents. There have been reports of different types of bacterial co-infection in COVID-19 patients. Some of these reports showed despite geographical differences and differences in hospital settings, bacterial co-infections are a major cause of morbidity and mortality in COVID-19 patients. The inappropriate use of antibiotics for bacterial infections, particularly broad-spectrum antibiotics, can also further complicate the infection process, often leading to multi drug resistance, clinical deterioration, poor prognosis, and eventually death. To this end, researchers must establish a new therapeutic approach to control SARS-CoV-2 and the associated microbial coinfections. Hence, the aim of this review is to highlight the bacterial co-infection that has been recorded in COVID-19 patients and the status of antimicrobial resistance associated with the dual infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA