Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 1685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417507

RESUMO

Enterotoxigenic Escherichia coli produces a myriad of adhesive structures collectively named colonization factors (CFs). CS3 is a CF, which is assembled into fine wiry fibrillae encoded by the cstA-H gene cluster. In this work we evaluated the influence of environmental cues such as temperature, osmolarity, pH, and carbon source on the expression of CS3 genes. The transcription of cstH major pilin gene was stimulated by growth of the bacteria in colonization factor broth at 37°C; the presence of glycerol enhanced cstH transcription, while glucose at high concentration, high osmolarity, and the depletion of divalent cations such as calcium and magnesium repressed cstH expression. In addition, we studied the role of H-NS, CpxRA, and CRP global regulators in CS3 gene expression. H-NS and CpxRA acted as repressors and CRP as an activator of cstH expression. Under high osmolarity, H-NS, and CpxRA were required for cstH repression. CS3 was required for both, bacterial adherence to epithelial cells and biofilm formation. Our data strengthens the existence of a multi-factorial regulatory network that controls transcription of CS3 genes in which global regulators, under the influence of environmental signals, control the production of this important intestinal colonization factor.

2.
Environ Microbiol ; 20(9): 3363-3377, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30062827

RESUMO

Avian pathogenic Escherichia coli (APEC) causes localized and systemic avian infections and is responsible for considerable economic losses in the poultry industry. This organism adheres and invades human and avian cells, however, the regulatory networks that dictate its virulence are largely unknown. The CpxRA two-component system is responsible for sensing and controlling outer-membrane stress and detecting misfolded proteins in the bacterial periplasmic space. CpxA is a membrane sensor kinase and CpxR is a cytoplasmic transcriptional regulator. In this study, we found that the CpxRA system regulates the virulence properties of APEC. Adherence, invasiveness, motility, production of type 1 fimbriae and biofilm were negatively affected in the ΔcpxA mutant indicating that the CpxA is required for full manifestation of these phenotypes. We also found that CpxR-P directly bound to the fimA promoter, locking the fimS region of type 1 fimbriae in the phase-OFF orientation. In addition, the absence of CpxA also reduced flagella production strongly suggesting that CpxRA regulates these two important surface organelles in APEC. This study provides compelling evidence of the role of the CpxRA two-component system in the regulation of virulence factors of avian pathogenic E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/microbiologia , Proteínas Quinases/metabolismo , Animais , Proteínas de Bactérias/genética , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Ligação Proteica , Proteínas Quinases/genética , Virulência , Fatores de Virulência/genética
3.
Vector Borne Zoonotic Dis ; 18(1): 70-73, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29232534

RESUMO

Blood-feeding arthropods play a major role in the transmission of several flaviviruses, which represent an important problem for human health. Currently, dengue is one of the most important arboviral emerging diseases worldwide. Furthermore, some previous studies have reported the presence of viral nucleic acids and antibodies against dengue virus (DENV) in wild animals. Our knowledge of the role played by wildlife reservoirs in the sylvatic transmission and maintenance of DENV remains limited. Our objective was to screen blood-feeding ectoparasites (bat flies) and their common vampire bat (Desmodus rotundus) hosts, for flaviviruses in Hidalgo, Mexico. We detected Flavivirus sequences in 38 pools of ectoparasites (Diptera: Streblidae, Strebla wiedemanni and Trichobius parasiticus) and 8 tissue samples of D. rotundus by RT-PCR and semi-nested PCR using FlaviPF1S, FlaviPR2bis, and FlaviPF3S primers specific for NS5, a gene highly conserved among flaviviruses. Phylogenetic inference analysis performed using the maximum likelihood algorithm implemented in PhyML showed that six sequences clustered with DENV (bootstrap value = 53.5%). Although this study supports other reports of DENV detection in bats and arthropods other than Aedes mosquitoes, the role of these ectoparasitic flies and of hematophagous bats in the epidemiology of DENV still warrants further investigation.


Assuntos
Quirópteros/parasitologia , Vírus da Dengue/isolamento & purificação , Dípteros/virologia , Miíase/veterinária , Animais , Vírus da Dengue/genética , Reservatórios de Doenças/veterinária , México , Miíase/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA