RESUMO
This study investigated the genetic differences between Aedes aegypti subspecies (Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf)) from Sudan using the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene marker. Nineteen distinct haplotypes of the ND4 were identified in female Aedes aegypti mosquitoes from the study sites. The phylogenetic relationship of the 19 ND4 haplotypes was demonstrated in a median-joining haplotype network tree with Aaa and Aaf populations found to share three haplotypes. The genetic variance (Pairwise FST values) was estimated and found to range from 0.000 to 0.811. Isolation by distance test revealed that geographical distance was correlated to genetic variation (coefficient value (r) = 0.43). The Polar maximum likelihood tree showed the phylogenetic relationship of 91 female Aaa and Aaf from the study sites, with most of the Aaf haplotypes clustered in one group while most of the Aaa haplotypes gathered in another group, but there was an admixture of the subspecies in both clusters, especially the Aaa cluster. The Spatial Analysis of Molecular Variance (SAMOVA) test revealed that the eight populations clustered into two phylogeographic groups/clusters of the two subspecies populations. The 2 Aedes aegypti subspecies seemed not to be totally separated geographically with gene flow among the populations.
RESUMO
Objectives: COVID-19 is a transmissible illness triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its onset in late 2019 in Wuhan city of China, it continues to spread universally, leading to an ongoing pandemic that shattered all efforts to restrain it. On the other hand, in Africa, the COVID-19 infection may be influenced by malaria coinfection. Hence, in this review article, we aimed to give a comprehensive account of the similarities between COVID-19 and malaria in terms of symptoms, clinical, immunological, and molecular perspectives. Methodology: In this article, we reviewed over 50 research papers to highlight the multilayered similarities between COVID-19 and malaria infections that might influence the ontology of COVID-19. Results: Despite the poor health and fragile medical system of many sub-Saharan African countries, they persisted with a statistically significantly low number of COVID-19 cases. This was attributed to many factors such as the young population age, the warm weather, the lack of proper diagnosis, previous infection with malaria, the use of antimalarial drugs, etc. Additionally, population genetics appears to play a significant role in shaping the COVID-19 dynamics. This is evident as recent genomic screening analyses of the angiotensin-converting enzyme 2 (ACE2) and malaria-associated-variants identified 6 candidate genes that might play a role in malaria and COVID-19 incidence and severity. Moreover, the clinical and pathological resemblances between the two diseases have made considerable confusion in the diagnosis and thereafter curb the disease in Africa. Therefore, possible similarities between the diseases in regards to the clinical, pathological, immunological, and genetical ascription were discussed. Conclusion: Understanding the dynamics of COVID-19 infection in Sub-Saharan Africa and how it is shaped by another endemic disease like malaria can provide insights into how to tailor a successful diagnostic, intervention, and control plans that lower both disease morbidity and mortality.