RESUMO
Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained samples is critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining these stained samples. However, current deep-learning approaches to analyzing large-sized whole slide images (WSIs) often employ patch-wise analysis, potentially missing the complex spatial patterns observed in the granuloma essential for accurate TB classification. To address this limitation, we propose an approach that models cell characteristics and interactions as a graph, capturing both cell-level information and the overall tissue micro-architecture. This method differs from the strategies in related cell graph-based works that rely on edge thresholds based on sparsity/density in cell graph construction, emphasizing a biologically informed threshold determination instead. We introduce a cell graph-based jumping knowledge neural network (CG-JKNN) that operates on the cell graphs where the edge thresholds are selected based on the length of the mycobacteria's cords and the activated macrophage nucleus's size to reflect the actual biological interactions observed in the tissue. The primary process involves training a Convolutional Neural Network (CNN) to segment AFBs and macrophage nuclei, followed by converting large (42831*41159 pixels) lung histology images into cell graphs where an activated macrophage nucleus/AFB represents each node within the graph and their interactions are denoted as edges. To enhance the interpretability of our model, we employ Integrated Gradients and Shapely Additive Explanations (SHAP). Our analysis incorporated a combination of 33 graph metrics and 20 cell morphology features. In terms of traditional machine learning models, Extreme Gradient Boosting (XGBoost) was the best performer, achieving an F1 score of 0.9813 and an Area under the Precision-Recall Curve (AUPRC) of 0.9848 on the test set. Among graph-based models, our CG-JKNN was the top performer, attaining an F1 score of 0.9549 and an AUPRC of 0.9846 on the held-out test set. The integration of graph-based and morphological features proved highly effective, with CG-JKNN and XGBoost showing promising results in classifying instances into AFB and activated macrophage nucleus. The features identified as significant by our models closely align with the criteria used by pathologists in practice, highlighting the clinical applicability of our approach. Future work will explore knowledge distillation techniques and graph-level classification into distinct TB progression categories.
RESUMO
Refractory delirium is a complex, often underdiagnosed, and difficult-to-treat phenomenon. It poses significant challenges to healthcare providers, especially in patients without prior intravenous access. In extreme cases, anesthetic management may be needed to treat refractory delirium. Here, we present a unique case of postoperative hyperactive refractory delirium in a patient without intravenous access, ultimately requiring anesthetic management for resolution.
RESUMO
This paper proposes a multichannel deep learning approach for lung disease detection using chest X-rays. The multichannel models used in this work are EfficientNetB0, EfficientNetB1, and EfficientNetB2 pretrained models. The features from EfficientNet models are fused together. Next, the fused features are passed into more than one non-linear fully connected layer. Finally, the features passed into a stacked ensemble learning classifier for lung disease detection. The stacked ensemble learning classifier contains random forest and SVM in the first stage and logistic regression in the second stage for lung disease detection. The performance of the proposed method is studied in detail for more than one lung disease such as pneumonia, Tuberculosis (TB), and COVID-19. The performances of the proposed method for lung disease detection using chest X-rays compared with similar methods with the aim to show that the method is robust and has the capability to achieve better performances. In all the experiments on lung disease, the proposed method showed better performance and outperformed similar lung disease existing methods. This indicates that the proposed method is robust and generalizable on unseen chest X-rays data samples. To ensure that the features learnt by the proposed method is optimal, t-SNE feature visualization was shown on all three lung disease models. Overall, the proposed method has shown 98% detection accuracy for pediatric pneumonia lung disease, 99% detection accuracy for TB lung disease, and 98% detection accuracy for COVID-19 lung disease. The proposed method can be used as a tool for point-of-care diagnosis by healthcare radiologists.Journal instruction requires a city for affiliations; however, this is missing in affiliation 3. Please verify if the provided city is correct and amend if necessary.correct.
RESUMO
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. It is imperative to detect cases of TB as early as possible because if left untreated, there is a 70% chance of a patient dying within 10 years. The necessity for supplementary tools has increased in mid to low-income countries due to the rise of automation in healthcare sectors. The already limited resources are being heavily allocated towards controlling other dangerous diseases. Modern digital radiography (DR) machines, used for screening chest X-rays of potential TB victims are very practical. Coupled with computer-aided detection (CAD) with the aid of artificial intelligence, radiologists working in this field can really help potential patients. In this study, progressive resizing is introduced for training models to perform automatic inference of TB using chest X-ray images. ImageNet fine-tuned Normalization-Free Networks (NFNets) are trained for classification and the Score-Cam algorithm is utilized to highlight the regions in the chest X-Rays for detailed inference on the diagnosis. The proposed method is engineered to provide accurate diagnostics for both binary and multiclass classification. The models trained with this method have achieved 96.91% accuracy, 99.38% AUC, 91.81% sensitivity, and 98.42% specificity on a multiclass classification dataset. Moreover, models have also achieved top-1 inference metrics of 96% accuracy and 98% AUC for binary classification. The results obtained demonstrate that the proposed method can be used as a secondary decision tool in a clinical setting for assisting radiologists.
Assuntos
Aprendizado Profundo , Tuberculose , Algoritmos , Inteligência Artificial , Humanos , Tuberculose/diagnóstico por imagem , Raios XRESUMO
Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract.
Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Leucócitos/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Citoplasma/patologia , Mineração de Dados , Bases de Dados Factuais , Entropia , Fractais , Hematologia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Red blood cell count plays a vital role in identifying the overall health of the patient. Hospitals use the hemocytometer to count the blood cells. Conventional method of placing the smear under microscope and counting the cells manually lead to erroneous results, and medical laboratory technicians are put under stress. A computer-aided system will help to attain precise results in less amount of time. This research work proposes an image-processing technique for counting the number of red blood cells. It aims to examine and process the blood smear image, in order to support the counting of red blood cells and identify the number of normal and abnormal cells in the image automatically. K-medoids algorithm which is robust to external noise is used to extract the WBCs from the image. Granulometric analysis is used to separate the red blood cells from the white blood cells. The red blood cells obtained are counted using the labeling algorithm and circular Hough transform. The radius range for the circle-drawing algorithm is estimated by computing the distance of the pixels from the boundary which automates the entire algorithm. A comparison is done between the counts obtained using the labeling algorithm and circular Hough transform. Results of the work showed that circular Hough transform was more accurate in counting the red blood cells than the labeling algorithm as it was successful in identifying even the overlapping cells. The work also intends to compare the results of cell count done using the proposed methodology and manual approach. The work is designed to address all the drawbacks of the previous research work. The research work can be extended to extract various texture and shape features of abnormal cells identified so that diseases like anemia of inflammation and chronic disease can be detected at the earliest.