Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO Rep ; 24(9): e56702, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477166

RESUMO

Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.


Assuntos
Células Ciliadas Auditivas Internas , Neuropeptídeos , Ratos , Animais , Audição/fisiologia , Sinapses/fisiologia , Cóclea , Gânglio Espiral da Cóclea/metabolismo , Proteínas do Citoesqueleto/metabolismo
2.
Mol Cell Neurosci ; 124: 103795, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436725

RESUMO

Properly working synapses are one important guarantor for a functional and healthy brain. They are small, densely packed structures, where information is transmitted through the release of neurotransmitters from synaptic vesicles (SVs). The latter cycle within the presynaptic terminal as they first fuse with the plasma membrane to deliver their neurotransmitter, and afterwards become recycled and prepared for a new release event. The synapse is an autonomous structure functioning mostly independent of the neuronal soma. Dysfunction in synaptic processes associated with local insults or genetic abnormalities can directly compromise synapse function and integrity and subsequently lead to the onset of neurodegenerative diseases. Therefore, measures need to be in place counteracting these threats for instance through the continuous replacement of old and damaged SV proteins. Interestingly recent studies show that the presynaptic scaffolding protein Piccolo contributes to health, function and integrity of synapses, as it mediates the delivery of synaptic proteins from the trans-Golgi network (TGN) towards synapses, as well as the local recycling and turnover of SV proteins within synaptic terminals. It can fulfill these various tasks through its multi-domain structure and ability to interact with numerous binding partners. In addition, Piccolo has recently been linked with the early onset neurodegenerative disease Pontocerebellar Hypoplasia Type 3 (PCH3) further underlying its importance for neuronal health. In this review, we will focus on Piccolo's contributions to synapse function, health and integrity and make a connection how those may contribute to the disease pattern of PCH3.


Assuntos
Doenças Neurodegenerativas , Vesículas Sinápticas , Humanos , Vesículas Sinápticas/metabolismo , Doenças Neurodegenerativas/metabolismo , Sinapses/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transporte Biológico
3.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446572

RESUMO

Autoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression. To address this issue, monoclonal autoantibodies were isolated from a young girl with a range of neurologic symptoms, some of which reacted with specific GABAA receptor (GABAAR) subunits, α1-subunit and α1γ2-subunit, which in this study we have characterized in detail using a combination of cellular imaging and electrophysiological techniques. These studies in neurons from wild-type mice (C57BL/6J; RRID:IMSR_JAX:000664) of mixed-sex revealed that the α1 and α1γ2 subunit-specific antibodies have differential effects on the GABAA receptor. Namely, the α1-antibody was found to directly affect GABAA receptor function on a short time scale that diminished GABA currents, leading to increased network excitability. On longer time scales those antibodies also triggered a redistribution of the GABAA receptor away from synapses. In contrast, the α1γ2-antibody had no direct effect on GABAA receptor function and could possibly mediate its effect through other actors of the immune system. Taken together, these data highlight the complexity underlying autoimmune disorders and show that antibodies can exert their effect through many mechanisms within the same disease.


Assuntos
Encefalite , Receptores de GABA-A , Animais , Camundongos , Receptores de GABA-A/metabolismo , Autoanticorpos/metabolismo , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico
4.
J Neurosci ; 42(15): 3253-3270, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35241491

RESUMO

Anti-NMDA receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder associated with autoantibodies against NMDARs, which cause a variety of symptoms from prominent psychiatric and cognitive manifestations to seizures and autonomic instability. Previous studies mainly focused on hippocampal effects of these autoantibodies, helping to explain mechanistic causes for cognitive impairment. However, antibodies' effects on higher cortical network function, where they could contribute to psychosis and/or seizures, have not been explored in detail until now. Here, we employed a patient-derived monoclonal antibody targeting the NR1 subunit of NMDAR and tested its effects on in vitro cultures of rodent cortical neurons, using imaging and electrophysiological techniques. We report that this hNR1 antibody drives cortical networks to a hyperexcitable state and disrupts mechanisms stabilizing network activity such as Npas4 signaling. Network hyperactivity is in part a result of a reduced synaptic output of inhibitory neurons, as indicated by a decreased inhibitory drive and levels of presynaptic inhibitory proteins, specifically in inhibitory-to-excitatory neuron synapses. Importantly, on a single-cell level hNR1 antibody selectively impairs NMDAR-mediated currents and synaptic transmission of cortical inhibitory neurons, yet has no effect on excitatory neurons, which contrasts with its effects on hippocampal neurons. Together, these findings provide a novel, cortex-specific mechanism of antibody-induced neuronal hyperexcitability, highlighting regional specificity underlying the pathology of autoimmune encephalitis.SIGNIFICANCE STATEMENT It is increasingly appreciated that the inadvertent activation of the immune system within CNS can underlie pathogenesis of neuropsychiatric disorders. Although the exact mechanisms remain elusive, autoantibodies derived from patients with autoimmune encephalitis pose a unique tool to study pathogenesis of neuropsychiatric states. Our analysis reveals that autoantibody against the NMDA receptor (NMDAR) has a distinct mechanism of action in the cortex, where it impairs function of inhibitory neurons leading to increased cortical network excitability, in contrast to previously described hippocampal synaptic mechanisms of information encoding, highlighting brain regional specificity. Notably, similar mechanism of NMDAR-mediated inhibitory hypofunction leading to cortical disinhibition has been suggested to underlie pathology of schizophrenia, hence our data provide new evidence for common mechanisms underlying neuropsychiatric disorders.


Assuntos
Encefalite , Receptores de N-Metil-D-Aspartato , Autoanticorpos/metabolismo , Doença de Hashimoto , Humanos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo
5.
J Neurosci ; 40(14): 2943-2959, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122952

RESUMO

Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/fisiopatologia , Proteínas do Citoesqueleto/metabolismo , Neuropeptídeos/metabolismo , Atrofias Olivopontocerebelares , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Masculino , Fenótipo , Ratos
6.
Elife ; 82019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074746

RESUMO

Loss of function of the active zone protein Piccolo has recently been linked to a disease, Pontocerebellar Hypoplasia type 3, which causes brain atrophy. Here, we address how Piccolo inactivation in rat neurons adversely affects synaptic function and thus may contribute to neuronal loss. Our analysis shows that Piccolo is critical for the recycling and maintenance of synaptic vesicles. We find that boutons lacking Piccolo have deficits in the Rab5/EEA1 dependent formation of early endosomes and thus the recycling of SVs. Mechanistically, impaired Rab5 function was caused by reduced synaptic recruitment of Pra1, known to interact selectively with the zinc finger domains of Piccolo. Importantly, over-expression of GTPase deficient Rab5 or the Znf1 domain of Piccolo restores the size and recycling of SV pools. These data provide a molecular link between the active zone and endosome sorting at synapses providing hints to how Piccolo contributes to developmental and psychiatric disorders.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Neuropeptídeos/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Axônios/metabolismo , Elementos de DNA Transponíveis/genética , Endossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Inativação de Genes , Guanosina Difosfato/metabolismo , Modelos Biológicos , Mutagênese/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ratos , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
Ann Neurol ; 85(5): 771-776, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843274

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common autoimmune encephalitis related to autoantibody-mediated synaptic dysfunction. Cerebrospinal fluid-derived human monoclonal NR1 autoantibodies showed low numbers of somatic hypermutations or were unmutated. These unexpected germline-configured antibodies showed weaker binding to the NMDAR than matured antibodies from the same patient. In primary hippocampal neurons, germline NR1 autoantibodies strongly and specifically reduced total and synaptic NMDAR currents in a dose- and time-dependent manner. The findings suggest that functional NMDAR antibodies are part of the human naïve B cell repertoire. Given their effects on synaptic function, they might contribute to a broad spectrum of neuropsychiatric symptoms. Ann Neurol 2019;85:771-776.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/sangue , Autoanticorpos/sangue , Receptores de N-Metil-D-Aspartato/sangue , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Células HEK293 , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Neurônios/química , Neurônios/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores de N-Metil-D-Aspartato/química
8.
J Neurosci ; 39(14): 2606-2619, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696732

RESUMO

Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones.SIGNIFICANCE STATEMENT Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neuropeptídeos/metabolismo , Neurônios Retinianos/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Animais , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Neuropeptídeos/química , Neuropeptídeos/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Neurônios Retinianos/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura
9.
J Neurosci ; 39(12): 2163-2183, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30655355

RESUMO

The regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin-dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated, and whether SVs are cleared en masse together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real-time to support synaptic health. To address these questions, we have developed an imaging-based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light-activated ROS generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy-mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons of either sex, presynaptic autophagy can be induced in as little as 5-10 min and eliminates primarily the damaged protein rather than the SV en masse. Importantly, we also find that autophagy is essential for synaptic function, as light-activated damage to, for example, Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.SIGNIFICANCE STATEMENT The real-time surveillance and clearance of synaptic proteins are thought to be vital to the health, functionality, and integrity of vertebrate synapses and are compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Células HEK293 , Células HeLa , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
10.
Neurosci Res ; 109: 9-15, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26907521

RESUMO

BACE1-mediated cleavage of APP is a pivotal step in the production of the Alzheimer related Aß peptide and inhibitors of BACE1 are currently in clinical development for the treatment of Alzheimer disease (AD). While processing and trafficking of APP has been extensively studied in non-neuronal cells, the fate of APP at neuronal synapses and in response to reduced BACE1 activity has not been fully elucidated. Here we examined the consequence of reduced BACE1 activity on endogenous synaptic APP by monitoring N- and C-terminal APP epitopes by immunocytochemistry. In control rodent primary hippocampal neuron cultures, labeling with antibodies directed to N-terminal APP epitopes showed a significant overlap with synaptic vesicle markers (SV2 or synaptotagmin). In contrast, labeling with antibodies directed to C-terminal epitopes of APP showed only a limited overlap with these proteins. In neurons derived from BACE1-deficient mice, and in control neurons treated with a BACE1 inhibitor, both the N-terminal and the C-terminal APP labeling overlapped significantly with synaptic vesicle markers. Moreover, BACE1 inhibition increased the proximity between the APP C-terminus and SV2 as shown by a proximity ligation assay. These results, together with biochemical observations, indicate that BACE1 can regulate the levels of full-length APP at neuronal synapses.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/metabolismo , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Sinapses/metabolismo
11.
EMBO Rep ; 16(8): 923-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26160654

RESUMO

The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.


Assuntos
Invertebrados/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Vertebrados/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Invertebrados/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/química , Sinapses/diagnóstico por imagem , Vesículas Sinápticas/fisiologia , Ultrassonografia
12.
J Neurosci ; 34(35): 11781-91, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164673

RESUMO

The vesicular glutamate transporter (VGLUT) plays an essential role in synaptic transmission by filling vesicles with glutamate. At mammalian synapses, VGLUT expression level determines the amount of glutamate packaged into vesicles, and the specific paralog of VGLUT expressed affects the release probability. In this study, we investigate whether there is a link between the number of VGLUTs on vesicles and release probability. We used a combination of electrophysiology and imaging techniques in cultured mouse hippocampal neurons where the VGLUT expression level has been severely altered. We found that vesicles with drastically reduced VGLUT expression were released with a lower probability. This deficit in release could only be rescued by a functional transporter, suggesting that the transport function, and not the molecular interactions, of the protein affects vesicle release. Based on these data, we propose a novel means of presynaptic vesicle release regulation--the intravesicular glutamate fill state of the vesicle.


Assuntos
Hipocampo/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Animais , Células Cultivadas , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp
13.
J Neurosci ; 31(39): 13972-80, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957258

RESUMO

Eps15 homology domain-containing proteins (EHDs) are conserved ATPases implicated in membrane remodeling. Recently, EHD1 was found to be enriched at synaptic release sites, suggesting a possible involvement in the trafficking of synaptic vesicles. We have investigated the role of an EHD1/3 ortholog (l-EHD) in the lamprey giant reticulospinal synapse. l-EHD was detected by immunogold at endocytic structures adjacent to release sites. In antibody microinjection experiments, perturbation of l-EHD inhibited synaptic vesicle endocytosis and caused accumulation of clathrin-coated pits with atypical, elongated necks. The necks were covered with helix-like material containing dynamin. To test whether l-EHD directly interferes with dynamin function, we used fluid-supported bilayers as in vitro assay. We found that l-EHD strongly inhibited vesicle budding induced by dynamin in the constant presence of GTP. l-EHD also inhibited dynamin-induced membrane tubulation in the presence of GTPγS, a phenomenon linked with dynamin helix assembly. Our in vivo results demonstrate the involvement of l-EHD in clathrin/dynamin-dependent synaptic vesicle budding. Based on our in vitro observations, we suggest that l-EHD acts to limit the formation of long, unproductive dynamin helices, thereby promoting vesicle budding.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte/fisiologia , Dinaminas/fisiologia , Vesículas Sinápticas/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Feminino , Lampreias , Masculino , Estrutura Secundária de Proteína/fisiologia , Ratos , Vesículas Sinápticas/enzimologia
15.
Commun Integr Biol ; 3(6): 513-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21331227

RESUMO

Mammalian spermatozoa are highly polarized cells composed of two morphological and functional units, each optimized for a special task. Although the apparent division into head and tail may as such represent the anatomical basis to avoid random diffusion of their special sets of signaling proteins and lipids, recent findings demonstrate the presence of lipid raft-derived membrane platforms and specific scaffolding proteins, thus indicating that smaller sub-domains exist in the two functional units of male germ cells. The aim of this review is to summarize new insights into the principles of subcellular organization in mammalian spermatozoa. Special emphasis is placed on recent observations indicating that an "acrosomal synapse" is formed by lipid raft-derived membrane micro-environments and multidomain scaffolding proteins. Both mechanisms appear to be responsible for ensuring the attachment of the huge acrosomal vesicle to the overlaying plasma membrane, as well as for preventing an accidental spontaneous loss of the single acrosome.

16.
J Cell Sci ; 122(Pt 24): 4547-57, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19934217

RESUMO

The success of acrosomal exocytosis, a complex process with a variety of inter-related steps, relies on the coordinated interaction of participating signaling molecules. Since the acrosome reaction resembles Ca(2+)-regulated exocytosis in neurons, we investigated whether cognate neuronal binding partners of the multi-PDZ domain protein MUPP1, which recruits molecules that control the initial tethering and/or docking between the acrosomal vesicle and the plasma membrane, are also expressed in spermatozoa, and whether they contribute to the regulation of acrosomal secretion. We observed that CaMKIIalpha colocalizes with MUPP1 in the acrosomal region of epididymal spermatozoa where the kinase selectively binds to a region encompassing PDZ domains 10-11 of MUPP1. Furthermore, we found that pre-treating mouse spermatozoa with a CaMKII inhibitor that directly blocks the catalytic region of the kinase, as well as a competitive displacement of CaMKIIalpha from PDZ domains 10-11, led to a significant increase in spontaneous acrosomal exocytosis. Since Ca(2+)-calmodulin releases CaMKIIalpha from the PDZ scaffolding protein, MUPP1 represents a central signaling platform to dynamically regulate the assembly and disassembly of binding partners pertinent to acrosomal secretion, thereby precisely adjusting an increase in Ca(2+) to synchronized fusion pore formation.


Assuntos
Acrossomo/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Exocitose , Espermatozoides/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Camundongos , Domínios PDZ , Ligação Proteica , Transporte Proteico , Ratos
17.
J Cell Physiol ; 214(3): 757-68, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17894389

RESUMO

The success of acrosomal exocytosis, a complex process with a variety of interrelated steps, relies on the coordinated interaction of participating signaling molecules. Since scaffolding proteins are known to spatially organize sequential signaling pathways, we examined whether the Multi-PDZ domain protein MUPP1, recently identified in mammalian spermatozoa, is functionally active in controlling acrosomal secretion in mammalian sperm cells. To address this question, permeabilized mouse sperm were loaded with inhibitory antibodies against MUPP1 as well as with a photosensitive Ca(2+) chelator which allows a controlled release of acrosomal Ca(2+). The results revealed that MUPP1 controls initial tethering and docking of the acrosomal vesicle, whereas syntaxin 2, a t-SNARE protein also expressed in the acrosomal cap of mammalian spermatozoa, appears to take part in the final process of acrosomal fusion. Interestingly, using immunogold electron microscopy, it was found that MUPP1 is detectable in the region of the periacrosomal membrane. Furthermore, in isolated detergent-insoluble glycolipid-enriched membrane domains from epididymal spermatozoa, MUPP1 was found to show a striking association with the Triton X-100 insoluble membrane fraction, which did not change significantly upon sperm capacitation or partial chemical extraction of cholesterol. This evidence points to a role of MUPP1 as a membrane raft-associated molecular organizer, and suggests that mammalian spermatozoa may use a scaffolding protein and distinct membrane subdomains to spatially organize components involved in the process of acrosomal exocytosis.


Assuntos
Reação Acrossômica/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microdomínios da Membrana/metabolismo , Espermatozoides/metabolismo , Acrossomo/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Cálcio/farmacologia , Bovinos , Detergentes/farmacologia , Exocitose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Camundongos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Ratos , Extratos de Tecidos/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-17021831

RESUMO

Although chemotaxis has been proposed to guide sperm to egg throughout the animal kingdom, sperm attractants released from mammalian eggs have not been identified. Since the G protein subunit alpha-gustducin is accepted as a marker of chemosensitive cells, attempts were made to explore whether alpha-gustducin is also expressed in spermatozoa of mammals. Immunohistochemical approaches using an anti-alpha-gustducin-specific antibody revealed the most intense immunoreactivity in differentiating spermatids. Further evidence for the alpha-gustducin expression was obtained analyzing testicular and sperm-derived tissue preparations in western blot analyses. To elucidate whether alpha-gustducin is retained in mature spermatozoa, epididymal mouse and rat sperm were subjected to immunocytochemistry as well as immunogold electron microscopy. A specific staining was obtained within the circumference of the midpiece-localized mitochondria, on the axoneme and the outer dense fibers surrounding the microtubules of this region, whereas no labeling was detectable in the end piece regions. The analysis of ejaculated bovine and human sperm revealed a comparable segmental distribution pattern for alpha-gustducin. Although a possible function for alpha-gustducin has yet to be determined, the axonemal-associated localization within the midpiece and principal piece of different mammalian spermatozoa raises the possibility that this G protein alpha-subunit may process intracellular signals controlling sperm motility.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Espermatozoides/metabolismo , Transducina/metabolismo , Animais , Bovinos , Imuno-Histoquímica , Masculino , Camundongos , Ratos , Maturação do Esperma/fisiologia , Peça Intermédia do Espermatozoide/metabolismo , Peça Intermédia do Espermatozoide/ultraestrutura , Espermatozoides/ultraestrutura
19.
J Androl ; 27(3): 390-404, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16452527

RESUMO

Spermatozoa undergo complex sequences of precisely timed events during the process of fertilization. These priming events, which comprise capacitation, egg recognition, acrosome reaction, and sperm-oocyte fusion, are regulated by the activation of different intracellular signaling pathways. The efficacy and accuracy of signal transduction pathways often depend on the assembly of multiprotein signaling complexes, thereby coordinating and guiding the flow of regulatory information. To address the question whether PDZ-domain proteins, the most abundant protein interaction modules involved in the assembly of supramolecular signaling complexes, are present in rodent sperm, homologue of the RT-PCR approaches were performed with specific primer pairs for the vertebrate INAD-like PDZ domain protein MUPP1. The results revealed that this scaffolding protein, which comprises 13 different PDZ domains, is expressed in mouse testis. To obtain further support for the expression of the multi-PDZ domain protein MUPP1 in testicular tissue, immunohistochemical as well as immunocytochemical experiments were performed using a MUPP1-specific antibody. Detailed analyses of the spatial MUPP1-expression profile revealed that immunoreactivity is concentrated within the acrosomal region of round as well as elongated mouse spermatozoa. These results were confirmed in experimental approaches demonstrating that MUPP1 immunofluorescence was shed off from the acrosome region after acrosome reaction. To examine whether MUPP1 is also present in other mammalian sperm, immunocytochemical approaches were performed with isolated bovine as well as human sperm. The results revealed prominent MUPP1 expression which was restricted to the apical acrosomal region and, most notably, to the equatorial segment of the acrosome. The predominant expression profile of MUPP1 in sperm of different mammalian species suggests that this PDZ-domain protein may be involved in organizing signaling molecules mediating primary reactions of fertilization.


Assuntos
Acrossomo/fisiologia , Proteínas de Transporte/fisiologia , Transdução de Sinais/fisiologia , Animais , Bovinos , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Camundongos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Capacitação Espermática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA