Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 8(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37755889

RESUMO

Wastewater treatment plants are efficient in reducing bacterial loads but are also considered potential drivers of environmental antimicrobial resistance (AMR). In this study, we determined the effect of increased influent wastewater volume (from 40% to 66%) in the Legon sewage treatment plant (STP) on the removal of E. coli from sewage, along with changes in AMR profiles. This before and after study compared E. coli loads and AMR patterns in influent and effluent samples from a published baseline study (January-June 2018) with a follow-up study (March-May 2023). Extended-spectrum beta-lactamase (ESBL) E. coli were measured pre- and post-sewage treatment during the follow-up study. The follow-up study showed 7.4% and 24% ESBL E. coli proportions in influent and effluent, respectively. In both studies, the STP was 99% efficient in reducing E. coli loads in effluents, with no significant difference (p = 0.42) between the two periods. More E. coli resistance to antimicrobials was seen in effluents in the follow-up study versus the baseline study. The increased influent capacity did not reduce the efficiency of the STP in removing E. coli from influent wastewater but was associated with increased AMR patterns in effluent water. Further studies are required to determine whether these changes have significant effects on human health.

2.
Trop Med Infect Dis ; 6(2)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068850

RESUMO

Wastewater treatment plants receive sewage containing high concentrations of bacteria and antibiotics. We assessed bacterial counts and their antibiotic resistance patterns in water from (a) influents and effluents of the Legon sewage treatment plant (STP) in Accra, Ghana and (b) upstream, outfall, and downstream in the recipient Onyasia stream. We conducted a cross-sectional study of quality-controlled water testing (January-June 2018). In STP effluents, mean bacterial counts (colony-forming units/100 mL) had reduced E. coli (99.9% reduction; 102,266,667 to 710), A. hydrophila (98.8%; 376,333 to 9603), and P. aeruginosa (99.5%; 5,666,667 to 1550). Antibiotic resistance was significantly reduced for tetracycline, ciprofloxacin, cefuroxime, and ceftazidime and increased for gentamicin, amoxicillin/clavulanate, and imipenem. The highest levels were for amoxicillin/clavulanate (50-97%) and aztreonam (33%). Bacterial counts increased by 98.8% downstream compared to the sewage outfall and were predominated by E. coli, implying intense fecal contamination from other sources. There was a progressive increase in antibiotic resistance from upstream, to outfall, to downstream. The highest resistance was for amoxicillin/clavulanate (80-83%), cefuroxime (47-73%), aztreonam (53%), and ciprofloxacin (40%). The STP is efficient in reducing bacterial counts and thus reducing environmental contamination. The recipient stream is contaminated with antibiotic-resistant bacteria listed as critically important for human use, which needs addressing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA