Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34961224

RESUMO

Hairy roots (HRs) grown in vitro are a powerful platform for plant biotechnological advances and for the bio-based production of metabolites of interest. In this work, black carrot HRs able to accumulate anthocyanin as major secondary metabolite were used. Biomass and anthocyanin accumulation were improved by modulating growth medium composition-different Murashige & Skoog (MS)-based media-and H2O2-elicitation, and the level of the main antioxidant enzymes on elicited HRs was measured. Higher growth was obtained on liquid 1/2 MS medium supplemented with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2 applied on day 12 induced anthocyanin accumulation by 20%. The activity of superoxide dismutase (SOD)-which generates H2O2 from O2•--increased by over 50%, whereas the activity of H2O2-scavenging enzymes was not enhanced. Elicitation in the HRs can result in a controlled oxidative burst, in which SOD activity increased H2O2 levels, whereas anthocyanins, as effective reactive oxygen species scavengers, could be induced to modulate the oxidative burst generated. Moreover, given the proven stability of the HR lines used and their remarkable productivity, this system appears as suitable for elucidating the interplay between antioxidant and secondary metabolism.

2.
Plant Physiol Biochem ; 85: 41-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394799

RESUMO

The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.


Assuntos
Antioxidantes/metabolismo , Íons/metabolismo , Myrtus/metabolismo , Sais/metabolismo , Água/metabolismo , Transporte de Íons , Myrtus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA