RESUMO
RATIONALE: Clinical management of neonatal bronchopulmonary dysplasia (BPD) is often imprecise and can vary widely between different institutions and providers, due to limited objective measurements of disease pathology severity. There is critical need to improve guidance on the application and timing of interventional treatments, such as tracheostomy. OBJECTIVES: To generate an imaging-based clinical tool for early identification of those patients with BPD who are likely to require later tracheostomy and long-term mechanical ventilation. METHODS: We conducted a prospective cohort study of n = 61 infants (55 BPD, 6 preterm non-BPD). Magnetic resonance imaging (MRI) scores of lung parenchymal disease were used to create a binomial logistic regression model for predicting tracheostomy requirement. This model was further investigated using clinical variables and MRI-quantified tracheomalacia (TM). MEASUREMENTS AND MAIN RESULTS: A model for predicting tracheostomy requirement was created using MRI parenchymal score. This model had 89% accuracy, 100% positive predictive value (PPV), and 85% negative predictive value (NPV), compared with 84%, 60%, and 83%, respectively, when using only relevant clinical variables. In a subset of patients with airway MRI (n = 36), a model including lung and TM measurements had 83% accuracy, 92% PPV, and 78% NPV. CONCLUSIONS: MRI-based measurements of parenchymal disease and TM can be used to predict need for tracheostomy in infants with BPD, more accurately than clinical factors alone. This prediction model has strong potential as a clinical tool for physicians and families for early determination of tracheostomy requirement.
Assuntos
Displasia Broncopulmonar , Traqueomalácia , Displasia Broncopulmonar/diagnóstico por imagem , Displasia Broncopulmonar/terapia , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , TraqueostomiaRESUMO
BACKGROUND: Outcomes of infants with congenital diaphragmatic hernia (CDH) are primarily dependent on the severity of pulmonary hypoplasia. It is previously unknown whether postnatal lung growth in infants with CDH represents true parenchymal lung growth or merely an expansion in volume of the existing tissue. We hypothesized that lung volume growth in CDH infants will be accompanied by an increase in lung mass and that CDH infants will demonstrate accelerated catch-up growth of the more hypoplastic lung. METHODS: We used fetal and post-CDH repair MRI of 12 infants to measure lung volume and density, which was used to calculate lung mass. RESULTS: The average increase in right lung mass was 1.1 ± 1.1 g/week (p = 0.003) and the average increase in left lung mass was 1.8 ± 0.7 g/week (p < 0.001). When the ratio of left-to-right lung mass of the prenatal MRI was compared to post-repair MRI, the ratio significantly increased in all infants with average prenatal and post-repair ratios of 0.30 and 0.73, respectively (p = 0.002). CONCLUSION: Lung growth in infants with CDH is indeed growth in lung mass (i.e. parenchyma), and the lungs demonstrate catch-up growth (i.e., increased rate of growth in the more hypoplastic ipsilateral lung).