Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 78: 117137, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603398

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors. Recent efforts to develop amino acid analogues to inhibit glutamine metabolism in cancer have been extensive. Our lab recently discovered many L-γ-methyleneglutamic acid amides that were shown to be as efficacious as tamoxifen or olaparib in inhibiting the cell growth of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells after 24 or 72 h of treatment. None of these compounds inhibited the cell growth of nonmalignant MCF-10A breast cells. These L-γ-methyleneglutamic acid amides hold promise as novel therapeutics for the treatment of multiple subtypes of breast cancer. Herein, we report our synthesis and evaluation of two series of tert-butyl ester and ethyl ester prodrugs of these L-γ-methyleneglutamic acid amides and the cyclic metabolite and its tert-butyl esters and ethyl esters on the three breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 and the nonmalignant MCF-10A breast cell line. These esters were found to suppress the growth of the breast cancer cells, but they were less potent compared to the L-γ-methyleneglutamic acid amides. Pharmacokinetic (PK) studies were carried out on the lead L-γ-methyleneglutamic acid amide to establish tissue-specific distribution and other PK parameters. Notably, this lead compound showed moderate exposure to the brain with a half-life of 0.74 h and good tissue distribution, such as in the kidney and liver. Therefore, the L-γ-methyleneglutamic acid amides were then tested on glioblastoma cell lines BNC3 and BNC6 and head and neck cancer cell lines HN30 and HN31. They were found to effectively suppress the growth of these cancer cell lines after 24 or 72 h of treatment in a concentration-dependent manner. These results suggest broad applications of the L-γ-methyleneglutamic acid amides in anticancer therapy.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Amidas/química , Pró-Fármacos/farmacologia , Ésteres/farmacologia , Ésteres/química , Aminoácidos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
2.
Chem Commun (Camb) ; 58(36): 5490-5493, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35416212

RESUMO

A method for the in situ production of formaldehyde from dimethylsulfoxide, bromine, and cesium carbonate is reported for reactions with difluoroenolates and difluorobenzyl carbanions. This process also generates formaldehyde-d2 for the production of 2,2-difluoro-1,1-deuteroethanols. Mechanistic and computational studies further characterize the production of hydroxymethylated and hydroxydeuteromethylated difluorinated organic molecules.


Assuntos
Formaldeído , Ânions
3.
RSC Adv ; 11(13): 7115-7128, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33777357

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors, fueling the TCA cycle with glutamine-derived α-ketoglutarate. The enhanced production of α-ketoglutarate is critical to cancer cells as it provides carbons for the TCA cycle to produce glutathione, fatty acids, and nucleotides, and contributes nitrogens to produce hexosamines, nucleotides, and many nonessential amino acids. Efforts to inhibit glutamine metabolism in cancer using amino acid analogs have been extensive. l-γ-Methyleneglutamine was shown to be of considerable biochemical importance, playing a major role in nitrogen transport in Arachis and Amorpha plants. Herein we report for the first time an efficient synthetic route to l-γ-methyleneglutamine and its amide derivatives. Many of these l-γ-methyleneglutamic acid amides were shown to be as efficacious as tamoxifen or olaparib at arresting cell growth among MCF-7 (ER+/PR+/HER2-), and SK-BR-3 (ER-/PR-/HER2+) breast cancer cells at 24 or 72 h of treatment. Several of these compounds exerted similar efficacy to olaparib at arresting cell growth among triple-negative MDA-MB-231 breast cancer cells by 72 h of treatment. None of the compounds inhibited cell growth in benign MCF-10A breast cells. Overall, N-phenyl amides and N-benzyl amides, such as 3, 5, 9, and 10, arrested the growth of all three (MCF-7, SK-BR-3, and MDA-MB-231) cell lines for 72 h and were devoid of cytotoxicity on MCF-10A control cells; N-benzyl amides with an electron withdrawing group at the para position, such as 5 and 6, inhibited the growth of triple-negative MDA-MB-231 cells commensurate to olaparib. These compounds hold promise as novel therapeutics for the treatment of multiple breast cancer subtypes.

4.
Org Lett ; 22(7): 2630-2633, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181669

RESUMO

Fluoroalkenes serve as bioisosteres to peptide bonds and are resistant to hydrolytic enzymes in vivo. Currently, α-fluoro-α,ß-unsaturated carbonyl compounds are readily accessible via general synthetic methods; however, ß-fluoro-α,ß-unsaturated carbonyl groups are more challenging to construct. To address this need, we have designed a reagent, morpholine 3,3,3-trifluoropropanamide, that creates (E)-ß-fluoro-α,ß-unsaturated amides upon the addition of many commonly used Grignard reagents. Reactions with this reagent enable a high level of stereocontrol in the fluoroalkene product.


Assuntos
Amidas/síntese química , Morfolinas/química , Compostos Organometálicos/química , Amidas/química , Catálise , Estrutura Molecular
5.
J Org Chem ; 84(18): 11665-11675, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31449418

RESUMO

Controlling the cleavage of carbon-carbon bonds during a chemical reaction is a substantial challenge; however, synthetic methods that accomplish this objective produce valuable and often unexplored reactivity. We have designed a mild process to generate α,α-difluorobenzyl carbanions in the presence of potassium carbonate by exploiting the cleavage of C-C bonds during the release of trifluoroacetate. The initiating reagent is potassium carbonate, which represents an improvement over existing protocols that require a strong base. Fragmentation studies across substituted arenes and heteroarenes were conducted along with computational analyses to elucidate reactivity trends. Furthermore, the mildly generated α,α-difluorobenzyl carbanions from electron-deficient aromatics and heteroaromatic rings can react with aldehydes to create derivatives of difluoromethylbenzenes, which are valuable synthetic targets.


Assuntos
Derivados de Benzeno/síntese química , Carbono/química , Hidrocarbonetos Fluorados/síntese química , Ânions , Derivados de Benzeno/química , Fluoracetatos/química , Hidrocarbonetos Fluorados/química , Modelos Moleculares , Estrutura Molecular
6.
Bioorg Med Chem Lett ; 24(17): 4162-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103601

RESUMO

Preventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (-)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties. In an attempt to identify more drug-like EGCG derivatives with improved efficacy as HCV entry inhibitors, we initiated structure-activity investigations using semi-synthetic and synthetic EGCG analogs. The data show that there are multiple regions in the EGCG structure that contribute to activity. The gallate ester portion of the molecule appears to be of particular importance as a 3,4-difluoro analog of EGCG enhanced potency. This derivative and other active compounds were shown not to be cytotoxic in Huh-7 cell culture. These data suggest that more potent, non-cytotoxic EGCG analogs can be prepared in an attempt to identify more drug-like candidates to treat HCV infection by this mechanism.


Assuntos
Antivirais/química , Antivirais/farmacologia , Catequina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antivirais/síntese química , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Sobrevivência Celular , Relação Dose-Resposta a Droga , Hepacivirus/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Bioorg Med Chem Lett ; 24(10): 2263-6, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24745965

RESUMO

(-)-Epigallocatechin gallate (EGCG) is the major flavonoid of green tea and has been widely explored for a range of biological activities including anti-infective, anti-inflammatory, anti-cancer, and neuroprotection. Existing structure-activity data for EGCG has been largely limited to exploration of simple ethers and hydroxyl deletion. EGCG has poor drug-like properties because of multiple phenolic hydroxyl moieties and a metabolically labile ester. This work reports a substantial expansion of structure-activity understanding by exploring a range of semi-synthetic and synthetic derivatives with ester replacements and variously substituted aromatic and alicyclic groups containing more drug-like substituents. Structure-activity relationships for these molecules were obtained for Hsp90 inhibition. The results indicate that amide and sulfonamide linkers are suitable ester replacements. Hydroxylated aromatic rings and the cis-stereochemistry in EGCG are not essential for Hsp90 inhibition. Selected analogs in this series are more potent than EGCG in a luciferase refolding assay for Hsp90 activity.


Assuntos
Catequina/análogos & derivados , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Catequina/química , Catequina/farmacologia , Descoberta de Drogas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA