RESUMO
Groundnut oil is known as a good source of essential fatty acids which are significant in the physiological development of the human body. It has a distinctive fragrant making it ideal for cooking which contribute to its demand on the market. However, some groundnut oil producers have been suspected to produce groundnut oil by blending it with cheaper oils especially palm olein at different concentrations or by adding groundnut flavor to palm olein. Over the years, there have been several methods to detect adulteration in oils which are time-consuming and expensive. Near infrared (NIR) and ultraviolet-visible (UV-Vis) spectroscopies are cheap and rapid methods for oil adulteration. This present study aimed to apply NIR and UV-Vis in combination with chemometrics to develop models for prediction and quantification of groundnut oil adulteration. Using principal component analysis (PCA) scores, pure and prepared adulterated samples showed overlapping showing similarities between them. Linear discriminant analysis (LDA) models developed from NIR and UV-Vis gave an average cross-validation accuracy of 92.61% and 62.14% respectively for pure groundnut oil and adulterated samples with palm olein at 0, 1, 3, 5, 10, 20, 30, 40 and 50% v/v. With partial least squares regression free fatty acid, color parameters, peroxide and iodine values could be predicted with R2CV's up to 0.8799 and RMSECV's lower than 3 ml/100 ml for NIR spectra and R2CV's up to 0.81 and RMSECV's lower than 4 ml/100 ml for UV-Vis spectra. NIR spectra produced better models as compared to UV-Vis spectra.
Assuntos
Contaminação de Alimentos , Aprendizado de Máquina , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Contaminação de Alimentos/análise , Espectrofotometria Ultravioleta/métodos , Análise de Componente Principal , Análise Discriminante , Óleo de Amendoim/análise , Óleo de Palmeira/químicaRESUMO
Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively. Astrocytes in these areas exhibit distinctive molecular and morphological features tailored to the unique cellular and synaptic circuit environment of each nucleus. Using single-nucleus (sn) RNA sequencing, we trace the developmental trajectories of cells in the septum and find that neurons and astrocytes undergo region and developmental stage-specific local cell-cell interactions. We show that expression of the classic morphogens Sonic hedgehog (Shh) and Fibroblast growth factors (Fgfs) by MS and LS neurons respectively, functions to promote the molecular specification of local astrocytes in each region. Finally, using heterotopic cell transplantation, we show that both morphological and molecular specifications of septal astrocytes are highly dependent on the local microenvironment, regardless of developmental origins. Our data highlights the complex interplay between intrinsic and extrinsic factors shaping astrocyte identities and illustrates the importance of the local environment in determining astrocyte functional specialization.
RESUMO
The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.
Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula/genética , Córtex Cerebral , Células-Tronco Embrionárias , Neurogênese/genética , Neurônios/metabolismoRESUMO
Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.
Assuntos
Astrócitos , Proteínas Hedgehog , Astrócitos/metabolismo , Proteínas Hedgehog/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismoRESUMO
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Assuntos
Neurogênese/genética , Neurônios/fisiologia , Septo do Cérebro/fisiologia , Fator Nuclear 1 de Tireoide/genética , Transcrição Gênica , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Fator Nuclear 1 de Tireoide/metabolismoRESUMO
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Assuntos
Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Camundongos , Células-Tronco Neurais/citologia , Fatores de Transcrição/genéticaRESUMO
Regulators of chromatin dynamics and transcription are increasingly implicated in the aetiology of neurodevelopmental disorders. Haploinsufficiency of EHMT1, encoding a histone methyltransferase, is associated with several neurodevelopmental disorders, including Kleefstra syndrome, developmental delay and autism spectrum disorder. Using a mouse model of Ehmt1 haploinsufficiency (Ehmt1 D6Cre/+), we examined a number of brain and behavioural endophenotypes of relevance to neurodevelopmental disorders. Specifically, we show that Ehmt1 D6Cre/+ mice have deficits in information processing, evidenced by abnormal sensory-motor gating, a complete absence of object recognition memory, and a reduced magnitude of auditory evoked potentials in both paired-pulse inhibition and mismatch negativity. The electrophysiological experiments show that differences in magnitude response to auditory stimulus were associated with marked reductions in total and evoked beta- and gamma-band oscillatory activity, as well as significant reductions in phase synchronisation. The pattern of electrophysiological deficits in Ehmt1 D6Cre/+ matches those seen in control mice following administration of the selective NMDA-R antagonist, ketamine. This, coupled with reduction of Grin1 mRNA expression in Ehmt1 D6Cre/+ hippocampus, suggests that Ehmt1 haploinsufficiency may lead to disruption in NMDA-R. Taken together, these data indicate that reduced Ehmt1 dosage during forebrain development leads to abnormal circuitry formation, which in turn results in profound information processing deficits. Such information processing deficits are likely paramount to our understanding of the cognitive and neurological dysfunctions shared across the neurodevelopmental disorders associated with EHMT1 haploinsufficiency.
RESUMO
Over the last several decades the field has made tremendous progress in understanding the proliferative behavior of cortical progenitors and the lineage relationships of their clonal progeny. The genetic and epigenetic mechanisms that control the dynamic patterns of gene expression during cortical development are only beginning to be characterized. In this review we highlight the most well characterized epigenetic modifications and their influence on progenitor proliferation and cortical neuron cell fate.