Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Phys Chem Lett ; 14(35): 7824-7832, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37624618

RESUMO

Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces.

2.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014328

RESUMO

Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.


Assuntos
Ouro , Nanopartículas , Ouro/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Análise Espectral Raman/métodos
3.
Beilstein J Nanotechnol ; 13: 572-581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860454

RESUMO

Using a triangular molybdenum diselenide (MoSe2) flake as surface-enhanced Raman spectroscopy (SERS) platform, we demonstrate the dependency of the Raman enhancement on laser beam polarization and local structure using copper phthalocyanine (CuPc) as probe. Second harmonic generation (SHG) and photoluminescence spectroscopy and microscopy are used to reveal the structural irregularities of the MoSe2 flake. The Raman enhancement in the focus of an azimuthally polarized beam, which possesses exclusively an in-plane electric field component is stronger than the enhancement by a focused radially polarized beam, where the out-of-plane electric field component dominates. This phenomenon indicates that the face-on oriented CuPc molecules strongly interact with the MoSe2 flake via charge transfer and dipole-dipole interaction. Furthermore, the Raman scattering maps on the irregular MoSe2 surface show a distinct correlation with the SHG and photoluminescence optical images, indicating the relationship between local structure and optical properties of the MoSe2 flake. These results contribute to understand the impacts of local structural properties on the Raman enhancement at the surface of the 2D transition-metal dichalcogenide.

4.
J Phys Chem C Nanomater Interfaces ; 126(12): 5691-5700, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35694697

RESUMO

Metallic or dielectric nano-objects change the photon local density of states of closely placed emitters, particularly when plasmon or Mie resonances are present. Depending on the shape and material of these nano-objects, they may induce either a decrease or an increase in decay rates of the excited states of the emitter. In this work, we consider the reduction of the probability of optical transitions in emitters near high-refractive index dielectric (silicon and zinc selenide) nanoparticles. We tune the spectral positions of magnetic and electric modes of nanocylinders to obtain the largest overlap of the valleys in the total decay rate spectra for differently oriented dipoles and, in this way, find the highest inhibition of about 80% for randomly oriented emitters. The spectral positions of these valleys are easy to control since the wavelengths of the modes depend on the height and diameter of nanocylinders. The inhibition value is robust to the distance between the emitter and the nanoparticle in the range of nearly 50 nm, which is crucially important for the applications, such as selective optical transition engineering and photovoltaics.

5.
J Chem Phys ; 156(3): 034702, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065565

RESUMO

Confocal optical microscopy and tip-enhanced optical microscopy are applied to characterize the defect distributions in chemical vapor deposition-grown WS2 monolayer triangles qualitatively and quantitatively. The presence of defects in individual monolayer WS2 triangles is revealed with diffraction-limited spatial resolution in their photoluminescence (PL) images, from which the inhomogeneous defect density distribution is calculated, showing an inverse relationship to the PL intensity. The defect-related surface-enhanced Raman spectroscopy (SERS) effect is investigated by depositing a thin copper phthalocyanine layer (5 nm) as the probe molecule on the monolayer WS2 triangles surface. Higher SERS enhancement effects are observed at the defect-rich areas. Furthermore, tip-enhanced optical measurements are performed, which can reveal morphologically defected areas invisible in the confocal optical measurements. Furthermore, the area with high defect density appears brighter than the low-defected area in the tip-enhanced optical measurements, which are different from the observation in the confocal optical measurements. The underlying reasons are attributed to the near-field enhancement of the defect exciton emission induced by the optically excited tip and to an improved coupling efficiency between the tip-generated near-field with the altered dipole moment orientation at the local defect.

6.
J Chem Phys ; 156(1): 014203, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998354

RESUMO

Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.


Assuntos
Antracenos/química , Perileno/análogos & derivados , Teoria da Densidade Funcional , Perileno/química , Prótons
7.
ACS Appl Mater Interfaces ; 13(28): 32653-32661, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34242017

RESUMO

Intense electromagnetic (EM) hot-spots arising at the junctions or gaps in plasmonic nanoparticle assemblies can drive ultrahigh sensitivity in molecular detection by surface-enhanced spectroscopies. Harnessing this potential however requires access to the confined physical space at the EM hot-spots, which is a challenge for larger analytes such as biomolecules. Here, we demonstrate self-assembly derived gold nanoparticle cluster arrays (NCAs) on gold substrates exhibiting controlled interparticle (<1 nm wide) and intercluster (<10 nm wide) hot-spots as highly promising in this direction. Sensitivity of the NCAs toward detection of small (<1 nm) or large (protein-receptor interactions) analytes in surface-enhanced Raman and metal-enhanced fluorescence assays is found to be strongly impacted by the size of the cluster and the presence of reflective substrates. Experiments supported by numerical simulations attribute the higher sensitivity to higher EM field enhancements at the hot-spots, as well as greater analyte leverage over EM hot-spots. The best-performing arrays could push the sensitivity down to picomolar detection limits for sub-nanometric organic analytes as well as large protein analytes. The investigation paves the way for rational design of plasmonic biosensors and highlights the unique capabilities of a molecular self-assembly approach toward catering to this objective.


Assuntos
Carbocianinas/análise , Corantes Fluorescentes/análise , Nanopartículas Metálicas/química , Naftalenos/análise , Estreptavidina/análise , Compostos de Sulfidrila/análise , Carbocianinas/química , Corantes Fluorescentes/química , Ouro/química , Ouro/efeitos da radiação , Luz , Limite de Detecção , Nanopartículas Metálicas/efeitos da radiação , Poliestirenos/química , Polivinil/química , Piridinas/química , Espectrometria de Fluorescência/métodos , Análise Espectral Raman/métodos , Estreptavidina/química
8.
Opt Express ; 29(10): 14799-14814, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985194

RESUMO

A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.

9.
ACS Appl Mater Interfaces ; 13(7): 9113-9121, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33583180

RESUMO

Electromagnetic hot-spots at ultranarrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface-enhanced Raman or fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein, we leverage a well-calibrated process based on self-assembly of block copolymer colloids on a full-wafer level to produce high-density plasmonic nanopillar arrays exhibiting a large number (>1010 cm-2) of uniform interpillar EM hot-spots. The approach allows convenient handles to systematically vary the interpillar gap distances down to a sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances toward their leverage over interpillar hot-spots and the resulting sensitivity in SERS-based molecular assays. Comparing the detection of labeled proteins in surface-enhanced Raman and metal-enhanced fluorescence configurations further reveal the relative advantage of fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations are realized for both small organic molecules and proteins. The well-defined geometries delivered by a nanofabrication approach are critical to arriving at realistic geometric models to establish meaningful correlation between the structure, optical properties, and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that takes into account the analyte dimensions to drive ultrahigh sensitivity in plasmon-enhanced spectroscopies.

10.
J Chem Phys ; 154(7): 074701, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607882

RESUMO

Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au-Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metallic photoluminescence. The experiments are conducted by altering the incident laser intensity and polarization using a home-built scanning confocal optical microscope. The results show that AMPL originates from the recombination of avalanche hot carriers that are seeded by multiphoton ionization. Notably, at the excitation stage, multiphoton ionization is shown to be assisted by the local electromagnetic field enhancement produced by coupled plasmonic modes. At the emission step, the giant AMPL intensity can be evaluated as a function of the local field environment and the thermal factor for hot carriers, in accordance with a linear relationship between the power law exponent coefficient and the emitted photon energy. The dramatic change in the spectral profile is explained by spectral linewidth broadening mechanisms. This study offers nanospectroscopic evidence of both the potential optical damages for plasmonic nanostructures and the underlying physical nature of light-matter interactions under a strong laser field; it illustrates the significance of the emerging topics of plasmonic-enhanced spectroscopy and laser-induced breakdown spectroscopy.

11.
J Phys Chem Lett ; 12(3): 1025-1031, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470816

RESUMO

Tautomerization is a fundamental chemical reaction which involves the relocation of a proton in the reactants. Studying the optical properties of tautomeric species is challenging because of ensemble averaging. Many molecules, such as porphines, porphycenes, or phenanthroperylene quinones, exhibit a reorientation of the transition dipole moment (TDM) during tautomerization, which can be directly observed in single-molecule experiments. Here, we study single hypericin molecules, which is a prominent phenanthroperylene quinone showing antiviral, antidepressive, and photodynamical properties. Observing abrupt flipping of the image pattern combined with time-dependent density functional theory calculations allows drawing conclusions about the coexistence of four tautomers and their conversion path. This approach allows the unambiguous assignment of a TDM orientation to a specific tautomer and enables the determination of the chemical structure in situ. Our approach can be applied to other molecules showing TDM reorientation during tautomerization, helping to gain a deeper understanding of this important process.

12.
Nanoscale ; 12(45): 23173-23182, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33200755

RESUMO

To mimic the optical influence of disorder in condensed matter, the effect of uniform disorder on plasmonic resonances were investigated numerically and experimentally on aluminum (Al) nanoparticle arrays. Resorting to the analogue of a plasmonic periodic array to a crystal on the sharp optical spectrum and its anisotropy, the disorder in the transition from crystal to glass (with broadened spectrum and isotropy) is imitated by three kinds of Al plasmonic metasurfaces: varying the displacement, size and rotation of each Al nanoparticle in the periodic array. The random variation on the location or size of each Al nanodisk in the plasmonic crystal induces broadening and reduction of their plasmonic resonances without significantly shifting its wavelength. Moreover, by rotating each Al nanorod in the plasmonic crystal by a random angle, the polarization dependence of plasmonic resonances is progressively decreased by increasing the rotation disorder. Thanks to these three kinds of Al metasurfaces, an enlightened understanding of the random physics in the solid state and the influence of manufacturing deviation in nanophotonics is supported.

13.
Nanomaterials (Basel) ; 10(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158228

RESUMO

Long-range interaction in regular metallic nanostructure arrays can provide the possibility to manipulate their optical properties, governed by the excitation of localized surface plasmon (LSP) resonances. When assembling the nanoparticles in an array, interactions between nanoparticles can result in a strong electromagnetic coupling for specific grating constants. Such a grating effect leads to narrow LSP peaks due to the emergence of new radiative orders in the plane of the substrate, and thus, an important improvement of the intensity of the local electric field. In this work, we report on the optical study of LSP modes supported by square arrays of gold nanodiscs deposited on an indium tin oxyde (ITO) coated glass substrate, and its impact on the surface enhanced Raman scattering (SERS) of a molecular adsorbate, the mercapto benzoic acid (4-MBA). We estimated the Raman gain of these molecules, by varying the grating constant and the refractive index of the surrounding medium of the superstrate, from an asymmetric medium (air) to a symmetric one (oil). We show that the Raman gain can be improved with one order of magnitude in a symmetric medium compared to SERS experiments in air, by considering the appropriate grating constant. Our experimental results are supported by FDTD calculations, and confirm the importance of the grating effect in the design of SERS substrates.

14.
Nanotechnology ; 31(37): 375203, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32434165

RESUMO

Improved performance in flexible organic light-emitting diodes (OLEDs) is demonstrated by using a hybrid nanostructured plasmonic electrode consisting of silver nanowires (AgNWs) decorated with silver nanoparticles (AgNPs) and covered by exfoliated graphene sheets. Such all-solution processed electrodes show high optical transparency and electrical conductivity. When integrated in an OLED with super yellow polyphenylene vinylene as the emissive layer, the plasmon coupling of the NW-NP hybrid plasmonic system is found to significantly enhance the fluorescence, demonstrated by both simulations and photoluminescence measurements, leading to a current efficiency of 11.61 cd A-1 and a maximum luminance of 20 008 cd m-2 in OLEDs. Stress studies reveal a superior mechanical flexibility to the commercial indium-tin-oxide (ITO) counterparts, due to the incorporation of exfoliated graphene sheets. Our results show that these hybrid nanostructured plasmonic electrodes can be applied as an effective alternative to ITO for use in high-performance flexible OLEDs.

15.
Nanoscale ; 12(11): 6394-6402, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32140696

RESUMO

The arrangement of plasmonic nanoparticles in a non-symmetrical environment can feature far-field and/or near-field interactions depending on the distance between the objects. In this work, we study the hybridization of three intrinsic plasmonic modes (dipolar, quadrupolar and hexapolar modes) sustained by one elliptical aluminium nanocylinder, as well as behavior of the hybridized modes when the nanoparticles are organized in arrays or when the refractive index of the surrounding medium is changed. The position and the intensity of these hybridized modes were shown to be affected by the near-field and far-field interactions between the nanoparticles. In this work, two hybridized modes were tuned in the UV spectral range to spectrally coincide with the intrinsic interband excitation and emission bands of ZnO nanocrystals. The refractive index of the ZnO nanocrystal layer influences the positions of the plasmonic modes and increases the role of the superstrate medium, which in turn results in the appearance of two separate modes in the small spectral region. Hence, the enhancement of ZnO nanocrystal photoluminescence benefits from the simultaneous excitation and emission enhancements.

16.
J Phys Chem A ; 124(12): 2497-2504, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32126168

RESUMO

Hypericin is one of the most efficient photosensitizers used in photodynamic tumor therapy (PDT). The reported treatments of this drug reach from antidepressive, antineoplastic, antitumor and antiviral activity. We show that hypericin can be optically detected down to a single molecule at ambient conditions. Hypericin can even be observed inside of a cancer cell, which implies that this drug can be directly used for advanced microscopy techniques (PALM, spt-PALM, or FLIM). Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching, and blinking dynamics. Sudden spectral changes can be associated with a reorientation of the molecule on the particle surface. These properties of hypericin are very sensitive to the local environment. Comparison of DFT calculations with SERS spectra show that both the neutral and deprotonated form of hypericin can be observed on the single molecule and ensemble level.


Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/química , Antracenos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Fluorescência , Humanos , Microscopia de Fluorescência , Modelos Químicos , Perileno/química , Imagem Individual de Molécula , Análise Espectral Raman
17.
J Opt Soc Am A Opt Image Sci Vis ; 36(11): C78-C84, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873698

RESUMO

We evaluate experimentally and theoretically the role of the residual ligands and ambient environment refractive index in the optical response of a single spherical gold nanoparticle on a substrate and demonstrate the changes in the near- and far-field properties of its hybridized modes in the presence of the cetyltrimethylammonium bromide (CTAB) layer. Particularly, we show that the conventional bilayer scheme for CTAB is not relevant for colloidal nanoparticles deposited on a substrate. We show that this CTAB layer considerably changes the amplitude and localization of the confinement of the electric field, which is of prime importance in the design of plasmonic complex systems coupled to emitters. Moreover, we numerically study the influence of the CTAB layer on the modification of sensitivity of plasmonic resonances of a gold nanopshere to local refractive index changes.

18.
Nanoscale ; 11(48): 23475-23481, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31799534

RESUMO

Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.

19.
Nanotechnology ; 30(41): 415201, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339108

RESUMO

Gold nanocones acting as optical antennas offer an excellent geometry for focusing light near the cone tip, acting as nano-light sources with spot sizes on the order of the tip radius. However only the vertical plasmon mode oscillating in the axial direction can effectively excite the tip, whereas lateral modes oscillating along the cone base create mostly unwanted background in applications. The present work investigates the three-dimensional plasmonic mode structure of nanocones both experimentally and numerically. By tuning the nanocone aspect ratio, the modes can be spectrally tuned relative to each other, making them coincide for maximum excitation, or tuning the base mode away from the vertical mode for effective background suppression.

20.
Sci Rep ; 9(1): 7138, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073157

RESUMO

In the context of using portions of a photosynthetic apparatus of green plants and photosynthesizing bacteria in bioinspired photovoltaic systems, we consider possible control of the chlorophyll excited state decay rate using nanoantennas in the form of a single metal and semiconductor nanoparticle. Since chlorophyll luminescence competes with electron delivery for chemical reactions chain and also to an external circuit, we examine possible excited state decay inhibition contrary to radiative rate enhancement. Both metal and semiconductor nanoparticles enable inhibition of radiative decay rate by one order of the magnitude as compared to that in vacuum, whereas a metal nanosphere cannot perform the overall decay inhibition since slowing down of radiative decay occurs only along with the similar growth of its nonradiative counterpart whereas a semiconductor nanoantenna is lossless. Additionally, at normal orientation of the emitter dipole moment to a nanoparticle surface, a silicon nanoparticle promotes enhancement of radiative decay by one order of the magnitude within the whole visible range. Our results can be used for other photochemical or photovoltaic processes, and strong radiative decay enhancement found for dielectric nanoantennas paves the way to radiative decays and light emitters engineering without non-radiative losses.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais/instrumentação , Clorofila/análise , Plantas/metabolismo , Nanopartículas Metálicas , Fotossíntese , Pontos Quânticos , Silício , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA