Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177457

RESUMO

In recent years, there has been a growing need for accessible High-Throughput Plant Phenotyping (HTPP) platforms that can take measurements of plant traits in open fields. This paper presents a phenotyping system designed to address this issue by combining ultrasonic and multispectral sensing of the crop canopy with other diverse measurements under varying environmental conditions. The system demonstrates a throughput increase by a factor of 50 when compared to a manual setup, allowing for efficient mapping of crop status across a field with crops grown in rows of any spacing. Tests presented in this paper illustrate the type of experimentation that can be performed with the platform, emphasizing the output from each sensor. The system integration, versatility, and ergonomics are the most significant contributions. The presented system can be used for studying plant responses to different treatments and/or stresses under diverse farming practices in virtually any field environment. It was shown that crop height and several vegetation indices, most of them common indicators of plant physiological status, can be easily paired with corresponding environmental conditions to facilitate data analysis at the fine spatial scale.


Assuntos
Agricultura , Produtos Agrícolas , Produtos Agrícolas/genética , Fazendas , Fenótipo , Projetos de Pesquisa
2.
Sensors (Basel) ; 22(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408171

RESUMO

In contrast with classic bench-top hyperspectral (multispectral)-sensor-based instruments (spectrophotometers), the portable ones are rugged, relatively inexpensive, and simple to use; therefore, they are suitable for field implementation to more closely examine various soil properties on the spot. The purpose of this study was to evaluate two portable spectrophotometers to predict key soil properties such as texture and soil organic carbon (SOC) in 282 soil samples collected from proportional fields in four Canadian provinces. Of the two instruments, one was the first of its kind (prototype) and was a mid-infrared (mid-IR) spectrophotometer operating between ~5500 and ~11,000 nm. The other instrument was a readily available dual-type spectrophotometer having a spectral range in both visible (vis) and near-infrared (NIR) regions with wavelengths ranging between ~400 and ~2220 nm. A large number of soil samples (n = 282) were used to represent a wide variety of soil textures, from clay loam to sandy soils, with a considerable range of SOC. These samples were subjected to routine laboratory soil analysis before both spectrophotometers were used to collect diffuse reflectance spectroscopy (DRS) measurements. After data collection, the mid-IR and vis-NIR spectra were randomly divided into calibration (70%) and validation (30%) sets. Partial least squares regression (PLSR) was used with leave one out cross-validation techniques to derive the spectral calibrations to predict SOC, sand, and clay content. The performances of the calibration models were reevaluated on the validation set. It was found that sand content can be predicted more accurately using the portable mid-IR spectrophotometer and clay content is better predicted using the readily available dual-type vis-NIR spectrophotometer. The coefficients of determination (R2) and root mean squared error (RMSE) were determined to be most favorable for clay (0.82 and 78 g kg-1) and sand (0.82 and 103 g kg-1), respectively. The ability to predict SOC content precisely was not particularly good for the dataset of soils used in this study with an R2 and RMSE of 0.54 and 4.1 g kg-1. The tested method demonstrated that both portable mid-IR and vis-NIR spectrophotometers were comparable in predicting soil texture on a large soil dataset collected from agricultural fields in four Canadian provinces.


Assuntos
Carbono , Solo , Canadá , Carbono/análise , Argila , Areia , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
Front Robot AI ; 8: 627067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046434

RESUMO

In comparison to field crops such as cereals, cotton, hay and grain, specialty crops often require more resources, are usually more sensitive to sudden changes in growth conditions and are known to produce higher value products. Providing quality and quantity assessment of specialty crops during harvesting is crucial for securing higher returns and improving management practices. Technical advancements in computer and machine vision have improved the detection, quality assessment and yield estimation processes for various fruit crops, but similar methods capable of exporting a detailed yield map for vegetable crops have yet to be fully developed. A machine vision-based yield monitor was designed to perform size categorization and continuous counting of shallots in-situ during the harvesting process. Coupled with a software developed in Python, the system is composed of a video logger and a global navigation satellite system. Computer vision analysis is performed within the tractor while an RGB camera collects real-time video data of the crops under natural sunlight conditions. Vegetables are first segmented using Watershed segmentation, detected on the conveyor, and then classified by size. The system detected shallots in a subsample of the dataset with a precision of 76%. The software was also evaluated on its ability to classify the shallots into three size categories. The best performance was achieved in the large class (73%), followed by the small class (59%) and medium class (44%). Based on these results, the occasional occlusion of vegetables and inconsistent lighting conditions were the main factors that hindered performance. Although further enhancements are envisioned for the prototype system, its modular and novel design permits the mapping of a selection of other horticultural crops. Moreover, it has the potential to benefit many producers of small vegetable crops by providing them with useful harvest information in real-time.

4.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535461

RESUMO

The actively heated fiber optics (AHFO) technique has the potential to measure soil water at high spatial and temporal resolutions, and thus it can bridge the measurement gap from point to large scales. However, the availability of power might restrict its use, since high power is required to heat long fiber optic cables under field conditions; this can be a challenge for long-term soil water monitoring under field conditions. This study investigated the performance of different heating strategies (power intensity and heating duration) on soil water measurement by the AHFO technique on three different textured soils. Different heating strategies: high power-short pulses (20 Wm-1-3 min), low power-short pulses (10 Wm-1-3 min, 5 Wm-1-3 min, 2.5 Wm-1-3 min) and low power-long pulses (10 Wm-1-5 min, 5 Wm-1-10 min, 2.5 Wm-1-15 min) were tested using laboratory soil columns. The study compared the sensitivity of the thermal response, NTcum to volumetric water content (VWC) and the predictive error of different heating strategies and soils. Results of this study showed that the sensitivity of NTcum increased and the predictive error decreased with increasing power intensity, irrespective of the soil type. Low power-short heat pulses such as 5 Wm-1-3 min and 2.5 Wm-1-3 min produced high predictive errors, RMSE of 5-6% and 6-7%, respectively. However, extending the heating duration was effective in reducing the error for both 10 and 5 Wm-1 power intensities, but not for the 2.5 Wm-1. The improvement was particularly noticeable in 5 Wm-1 -10 min; it reduced the RMSE by 1.5% (sand and clay loam) and 2.73% (sandy loam). Overall, the results of this study suggested that extending the heating duration of 10 and 5 Wm-1 power intensities can improve the sensitivity of the thermal response and predictive accuracy of the estimated soil water content (SWC). The results are particularly important for field applications of the AHFO technique, which can be limited by the availability of high power, which restricts the use of 20 Wm-1. For example, 5 Wm-1-10 min improved the predictive accuracy to 3-4%, which has the potential to be used for validating soil water estimations at satellite footprint scales. However, the effects of diurnal temperature variations should also be considered, particularly when using low power intensity such as 5 Wm-1 in surface soils under field conditions.

5.
Sensors (Basel) ; 18(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642389

RESUMO

Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m-1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (Tcum) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.

6.
Sensors (Basel) ; 15(3): 4734-48, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25730479

RESUMO

The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost.


Assuntos
Biodegradação Ambiental , Técnicas Biossensoriais , Dióxido de Carbono/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Dióxido de Carbono/toxicidade , Respiração Celular/efeitos dos fármacos , Gasolina/toxicidade , Humanos , Microbiologia do Solo , Poluentes do Solo/química , Espectrofotometria Infravermelho
7.
Sensors (Basel) ; 14(7): 13243-55, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057135

RESUMO

Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.


Assuntos
Solo/química , Condutividade Elétrica , Eletrodos , Fenômenos Eletromagnéticos
8.
Science ; 327(5967): 828-31, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20150492

RESUMO

Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Adapting production inputs site-specifically within a field and individually for each animal allows better use of resources to maintain the quality of the environment while improving the sustainability of the food supply. Precision agriculture provides a means to monitor the food production chain and manage both the quantity and quality of agricultural produce.


Assuntos
Agricultura/métodos , Criação de Animais Domésticos/métodos , Produtos Agrícolas , Abastecimento de Alimentos , Solo , Animais , Animais Domésticos , Automação , Produtos Agrícolas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA