Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113395, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967557

RESUMO

Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Retrovirus Endógenos , Humanos , Animais , Camundongos , Retrovirus Endógenos/genética , Doenças Neuroinflamatórias , Transcriptoma/genética , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia , Oligodendroglia/patologia , Inflamação/genética , Inflamação/patologia , Camundongos Endogâmicos C57BL
2.
Sci Adv ; 9(44): eadh9543, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910626

RESUMO

The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.


Assuntos
Retroelementos , Transcriptoma , Animais , Humanos , Retroelementos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Neurônios , Primatas/genética
3.
STAR Protoc ; 3(2): 101285, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496780

RESUMO

This protocol describes the design and use of CRISPRi-mediated transcriptional silencing in human iPSCs, for loss-of-function studies in brain development research. The protocol avoids single cell selection, thereby eliminating side effects of clonal expansion and sites of viral integration. We also describe a neural progenitor differentiation protocol and discuss the challenges of target-specific lentiviral silencing, efficient silencing levels, and off-target effects. For complete details on the use and execution of this protocol, please refer to Johansson et al. (2022).


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Integração Viral
4.
Cell Stem Cell ; 29(1): 52-69.e8, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34624206

RESUMO

The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.


Assuntos
Redes Reguladoras de Genes , Organoides , Encéfalo/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Humanos , Organoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA