Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Res ; 216(Pt 1): 114480, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206923

RESUMO

A research-based course was developed to investigate the legacy of soil lead (Pb) pollution in Los Angeles, California. During the course, undergraduate and graduate students collected a total of 270 soil samples for analyses of metal (loid) concentrations in different land-use types (residential, park, and school). Residential soils had significantly higher Pb concentrations than other land uses (p < 0.01) exceeding the California recommended safety level for soil Pb (80 mg/kg) at the highest frequency (64% of samples), followed by schools (42%) and parks (6.0%). Soil Pb from all 87 census block groups was correlated with battery recycling plant and railroad proximity as geospatial indicators of childhood Pb exposure risk. Meanwhile, census block groups with higher Pb levels were correlated with higher percentages of the following population: those without health insurance, without college degrees, with a lower median household income and income below the poverty line, and ethnic and racial minorities (r = -0.46 to 0.59, p < 0.05). Principal component regression models significantly improved soil Pb estimation over correlation analysis by incorporating sociodemographic, economic, and geospatial risk factors for Pb exposure (R2 = 0.58, p < 0.05). This work provides new insights into how topsoil Pb prevails in various land-use types and their co-occurring sociodemographic, economic, and geospatial risk factors, indicating the need for multi-scalar assessment across urban land uses.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Poluentes do Solo/análise , Chumbo/análise , Los Angeles , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
2.
Ethn Dis ; 32(4): 333-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388858

RESUMO

Community-based participatory research/community-partnered participatory research (CBPR/CPRR) is viewed as a critical approach for improving health and addressing inequities found in under-resourced communities by pairing community partners and academic partners to address health and environmental concerns. This article aims to amplify the potential of the current CBPR/CPPR models through insights learned from the underserved community of Watts in south central Los Angeles. We discuss our framework that shifts the primary academic focus in the community-academia partnership from individual investigators and/or research groups to the academic institution to generate sustainable partnerships. We summarize the Community Action Research Engagement (CARE) Framework as a new set of recommended tenets to expand CBPR/CPPR. This framework can provide guidance for how universities can catalyze: 1) building trust; 2) facilitating knowledge; 3) advancing solutions; and 4) fostering mentorship in the context of leveraging a university's position to address the root causes of community inequities and thus create more sustained partnerships that achieve greater impact within their surrounding communities.


Assuntos
Pesquisa Participativa Baseada na Comunidade , Relações Comunidade-Instituição , Humanos , Participação da Comunidade , Universidades , Pesquisadores
4.
J Biol Chem ; 285(43): 33567-33576, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20729548

RESUMO

Collagen VI is an extracellular protein that most often contains the three genetically distinct polypeptide chains, α1(VI), α2(VI), and α3(VI), although three recently identified chains, α4(VI), α5(VI), and α6(VI), may replace α3(VI) in some situations. Each chain has a triple helix flanked by N- and C-terminal globular domains that share homology with the von Willebrand factor type A (VWA) domains. During biosynthesis, the three chains come together to form triple helical monomers, which then assemble into dimers and tetramers. Tetramers are secreted from the cell and align end-to-end to form microfibrils. The precise molecular mechanisms responsible for assembly are unclear. Mutations in the three collagen VI genes can disrupt collagen VI biosynthesis and matrix organization and are the cause of the inherited disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. We have identified a Ullrich congenital muscular dystrophy patient with compound heterozygous mutations in α2(VI). The first mutation causes skipping of exon 24, and the mRNA is degraded by nonsense-mediated decay. The second mutation is a two-amino acid deletion in the C1 VWA domain. Recombinant C1 domains containing the deletion are insoluble and retained intracellularly, indicating that the mutation has detrimental effects on domain folding and structure. Despite this, mutant α2(VI) chains retain the ability to associate into monomers, dimers, and tetramers. However, we show that secreted mutant tetramers containing structurally abnormal C1 VWA domains are unable to associate further into microfibrils, directly demonstrating the critical importance of a correctly folded α2(VI) C1 domain in microfibril formation.


Assuntos
Colágeno Tipo VI/metabolismo , Distrofias Musculares/metabolismo , Mutação , Dobramento de Proteína , Multimerização Proteica , Fator de von Willebrand/metabolismo , Linhagem Celular , Colágeno Tipo VI/genética , Éxons/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Distrofias Musculares/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de von Willebrand/genética
5.
Ann Neurol ; 64(3): 294-303, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18825676

RESUMO

OBJECTIVE: The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they cause these different phenotypes. METHODS: We studied eight new patients who presented with a spectrum of clinical severity, screened the three collagen VI messenger RNA for mutations, and examined collagen VI biosynthesis and the assembly pathway. RESULTS: All eight patients had heterozygous glycine mutations toward the N-terminal end of the triple helix. The mutations produced two assembly phenotypes. In the first patient group, collagen VI dimers accumulated in the cell but not the medium, microfibril formation in the medium was moderately reduced, and the amount of collagen VI in the extracellular matrix was not significantly altered. The second group had more severe assembly defects: some secreted collagen VI tetramers were not disulfide bonded, microfibril formation in the medium was severely compromised, and collagen VI in the extracellular matrix was reduced. INTERPRETATION: These data indicate that collagen VI glycine mutations impair the assembly pathway in different ways and disease severity correlates with the assembly abnormality. In mildly affected patients, normal amounts of collagen VI were deposited in the fibroblast matrix, whereas in patients with moderate-to-severe disability, assembly defects led to a reduced collagen VI fibroblast matrix. This study thus provides an explanation for how different glycine mutations produce a spectrum of clinical severity.


Assuntos
Doenças do Colágeno/genética , Colágeno Tipo VI/genética , Predisposição Genética para Doença/genética , Glicina/genética , Distrofias Musculares/genética , Mutação/genética , Sequência de Aminoácidos/genética , Células Cultivadas , Doenças do Colágeno/metabolismo , Doenças do Colágeno/fisiopatologia , Colágeno Tipo VI/biossíntese , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/patologia , Tecido Conjuntivo/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Testes Genéticos , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Estrutura Terciária de Proteína/genética , RNA Mensageiro/genética
6.
Ann Neurol ; 62(4): 390-405, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17886299

RESUMO

OBJECTIVE: Dominant mutations in the three collagen VI genes cause Bethlem myopathy, a disorder characterized by proximal muscle weakness and commonly contractures of the fingers, wrists, and ankles. Although more than 20 different dominant mutations have been identified in Bethlem myopathy patients, the biosynthetic consequences of only a subset of these have been studied, and in many cases, the pathogenic mechanisms remain unknown. METHODS: We have screened fourteen Bethlem myopathy patients for collagen VI mutations and performed detailed analyses of collagen VI biosynthesis and intracellular and extracellular assembly. RESULTS: Collagen VI abnormalities were identified in eight patients. One patient produced around half the normal amount of alpha1(VI) messenger RNA and reduced amounts of collagen VI protein. Two patients had a previously reported mutation causing skipping of COL6A1 exon 14, and three patients had novel mutations leading to in-frame deletions toward the N-terminal end of the triple-helical domain. These mutations have different and complex effects on collagen VI intracellular and extracellular assembly. Two patients had single amino acid substitutions in the A-domains of COL6A2 and COL6A3. Collagen VI intracellular and extracellular assembly was normal in one of these patients. INTERPRETATION: The key to dissecting the pathogenic mechanisms of collagen VI mutations lies in detailed analysis of collagen VI biosynthesis and assembly. The majority of mutations result in secretion and deposition of structurally abnormal collagen VI. However, one A-domain mutation had no detectable effect on assembly, suggesting that it acts by compromising collagen VI interactions in the extracellular matrix of muscle.


Assuntos
Doenças do Colágeno/genética , Colágeno Tipo VI/genética , Genes Dominantes/genética , Doenças Musculares/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
7.
J Biol Chem ; 281(24): 16607-14, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16613849

RESUMO

Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.


Assuntos
Colágeno Tipo VI/química , Matriz Extracelular/metabolismo , Microfibrilas/química , Adolescente , Linhagem Celular Tumoral , Células Cultivadas , Complemento C5/química , Meios de Cultura/metabolismo , Fibroblastos/metabolismo , Humanos , Masculino , Microfibrilas/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA