RESUMO
A study evaluated the effects of adding multi-enzyme mixture to diets deficient in net energy (NE), standardized ileal digestible (SID) amino acids (AA), standardized total tract digestible (STTD) P, and Ca on growth performance, bone mineralization, nutrient digestibility, and fecal microbial composition of grow-finish pigs. A total of 300 pigs (initial body weight [BW] = 29.2 kg) were housed by sex and BW in 45 pens of 7 or 6 pigs and fed 5 diets in a randomized complete block design. Diets were positive control (PC), and negative control 1 (NC1) or negative control 2 (NC2) without or with multi-enzyme mixture. The multi-enzyme mixture supplied at least 1,800, 1,244, 6,600, and 1,000 units of xylanase, ß -glucanase, arabinofuranosidase, and phytase per kilogram of diet, respectively. The PC was adequate in all nutrients. The NC1 diet had lower content NE, SID AA, STTD P, and Ca than PC diet by about 7%, 7%, 32%, and 13%, respectively. The NC2 diet had lower NE, SID AA, STTD P, and Ca than PC diet by 7%, 7%, 50%, and 22%, respectively. The diets were fed in four phases based on BW: Phase 1: 29-45 kg, Phase 2: 45-70 kg, Phase 3: 70-90 kg, and Phase 4: 90-120 kg. Nutrient digestibility, bone mineralization, and fecal microbial composition were determined at the end of Phase 1. Pigs fed PC diet had greater (P < 0.05) overall G:F than those fed NC1 diet or NC2 diet. Multi-enzyme mixture increased (P < 0.05) overall G:F, but the G:F of the multi-enzyme mixture-supplemented diets did not reach (P < 0.05) that of PC diet. Multi-enzyme mixture tended to increase (P = 0.08) femur breaking strength. Multi-enzyme mixture increased (P < 0.05) the ATTD of GE for the NC2 diet, but unaffected the ATTD of GE for the NC1 diet. Multi-enzyme mixture decreased (P < 0.05) the relative abundance of the Cyanobacteria and increased (P < 0.05) relative abundance of Butyricicoccus in feces. Thus, the NE, SID AA, STTD P, and Ca could be lowered by about 7%, 7%, 49%, and 22%, respectively, in multi-enzyme mixture-supplemented diets without negative effects on bone mineralization of grow-finish pigs. However, multi-enzyme mixture supplementation may not fully restore G:F of the grow-finish pigs fed diets that have lower NE and SID AA contents than recommended by 7%. Since an increase in content of Butyricicoccus in intestine is associated with improved gut health, addition of the multi-enzyme mixture in diets for pigs can additionally improve their gut health.
A study evaluated the effects of supplementing a multi-enzyme mixture that contain fiber degrading enzymes and phytase on the growth performance, bone strength, and fecal microbial composition of grow-finish pigs fed corn-wheat-wheat bran-based diets. Five diets fed were a positive control (PC) diet, and two negative control (NC1 and NC2) diets without or with the multi-enzyme mixture. The PC diet was adequate in all nutrients and had greater available (net) energy and digestible amino content than NC1 diet or NC2 diet by 7%, and greater digestible P content than the NC1 diet (by 32%) and NC2 diet (by 50%). The diets were fed from 30 to 120 kg body weight. Feed efficiency for PC diet was greater than that for NC1 diet or NC2 diet. Multi-enzyme mixture improved feed efficiency, bone strength, and fecal concentration of beneficial micro-organisms (known as Butyricicoccus) for NC1 and NC2 diets. However, feed efficiency for the NC1 and NC2 diets did not reach that for the PC diet. Thus, multi-enzyme mixture can fully restore bone strength (but not feed efficiency) and improve health of grow-finish pigs fed corn-wheat-wheat bran-based diets in which available energy, amino acids, and P contents have been reduced by the afore-mentioned margins.
Assuntos
6-Fitase , Doenças dos Suínos , Animais , 6-Fitase/farmacologia , Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Calcificação Fisiológica , Dieta/veterinária , Suplementos Nutricionais , Digestão , Fezes/química , Nutrientes/metabolismo , Suínos , Zea mays/metabolismoRESUMO
The objective of this study was to determine the interactive effects of dietary fiber solubility and lipid source on growth performance, visceral organ weights, gut histology, and gut microbiota composition of weaned pigs. A total of 280 nursery pigs [initial body weight (BW) = 6.84 kg] weaned at 21 d were housed in 40 pens (7 pigs/pen). The pigs were fed four diets (10 pens/diet) in a randomized complete block design in two phases: Phase 1 from 0 to 2 wk and Phase 2 from 2 to 5 wk. The diets were corn-soybean meal-based with either sugar beet pulp (SBP) or soybean hulls (SBH) as a fiber source and either soybean oil (SBO) or choice white grease (CWG) as a lipid source in a 2 × 2 factorial arrangement. The BW and feed intake were determined by phase, whereas visceral organ weights, intestinal histology, and gut microbial composition were determined at the end of the trial. Dietary fiber solubility and lipid source did not interact (P > 0.05) on average daily feed intake and average daily gain across all phases. However, the gain to feed ratio (G:F) for CWG-containing diets was lower (P < 0.05) than that for SBO-containing diets for Phase 1. Also, G:F for SBP-containing diets was lower (P < 0.05) than that for SBH-containing diets for Phase 1 and for the entire study period. Pigs fed SBP-containing diets had greater (P < 0.05) stomach weight, and tended to have greater (P < 0.10) small and large intestine weights relative to BW than those fed SBH-containing diets. Duodenal villous height to crypt depth ratio for CWG-based diets tended to be greater (P = 0.09) than that for SBO-based diets. Fiber solubility and lipid source interacted (P < 0.05) on relative abundance of Bacteroides in the colon such that the relative abundance of the Bacteroides for CWG was greater (P < 0.05) than that for the SBO in SBP-based diet, but not in SBH-based diet. Relative abundance of Butyricicoccus in the colon for SBH-based diet was greater (P < 0.05) than that for SBP-based diet. In conclusion, inclusion of SBH instead of SBP in corn-soybean meal-based diets for weaned pigs can result in increased feed efficiency and relative abundance of Butyricicoccus in the colon, which is associated with improved gut health. Also, inclusion of SBO instead of CWG in the diets for weaned pigs can result in improved feed efficiency during Phase 1 feeding; however, the pigs may recover from the low feed efficiency induced by dietary inclusion of CWG instead of SBO after Phase 1 feeding.
Assuntos
Ração Animal , Dieta , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras na Dieta , Distribuição Aleatória , Solubilidade , Óleo de Soja , SuínosRESUMO
An experiment was conducted to determine the effects of including canola meal (CM) in nursery pig diets on growth performance, immune response, fecal microbial composition, and gut integrity. A total of 200 nursery pigs (initial body weight = 7.00 kg) were obtained in two batches of 100 pigs each. Pigs in each batch were housed in 25 pens (four pigs per pen) and fed five diets in a randomized complete block design. The five diets were corn-soybean meal (SBM)-based basal diets with 0%, 10%, 20%, 30%, or 40% of CM. The diets were fed in three phases: phase 1: day 0 to 7, phase 2: day 7 to 21, and phase 3: day 21 to 42. Diets in each phase were formulated to similar net energy, Ca, and digestible P and amino acid contents. Feed intake and body weight were measured by phase. Immune response and gut integrity parameters were measured at the end of phases 1 and 2. Fecal microbial composition for diets with 0% or 20% CM was determined at the end of phase 2. Overall average daily gain (ADG) responded quadratically (P < 0.05) to increasing dietary level of CM such that ADG was increased by 17% due to an increase in the dietary level of CM from 0% to 20% and was reduced by 16% due to an increase in the dietary level of CM from 20% to 40%. Pigs fed diets with 0% or 40% CM did not differ in overall ADG. Dietary CM tended to quadratically decrease (P = 0.09) serum immunoglobulin A (IgA) level at the end of phase 2 such that serum IgA level tended to reduce with an increase in dietary CM from 0% to 20% and to increase with an increase in dietary CM from 20% to 40%. Dietary CM at 20% decreased (P < 0.05) the relative abundance of Bacteroidetes phylum and tended to increase (P = 0.07) the relative abundance of Firmicutes phylum. Dietary CM linearly increased (P < 0.05) the lactulose to mannitol ratio in the urine by 47% and 49% at the end of phases 1 and 2, respectively, and tended to linearly decrease (P < 0.10) ileal transepithelial electrical resistance at the end of phase 1 by 64%. In conclusion, CM fed in the current study could be included in corn-SBM-based diets for nursery pigs 20% to improve the growth performance and gut microbial composition and reduce immune response. Also, the CM used in the current study could be included in corn-SBM-based diets for nursery pigs at 30% or 40% without compromising growth performance. Dietary CM increased gut permeability, implying that dietary CM at 20% improves the growth performance of weaned pigs through mechanisms other than reducing gut permeability.
Assuntos
Brassica napus , Microbioma Gastrointestinal , Ração Animal/análise , Animais , Dieta/veterinária , Glycine max , Suínos , Zea maysRESUMO
High copper feed has been widely used as an inexpensive and highly effective feed additive to promote growth performance of pigs. However, long-term feeding of high copper feed may reduce the growth-promoting effects of copper, time-dependent accumulation of copper in animal tissues and organs, and copper toxicity thereby reducing the growth performance of pigs. Due to the widespread effects of high copper supplementation in animals' diets, the benefits and drawbacks of high copper feeding in pigs have been reported in several studies. Meanwhile, few of these studies have systematically described the mechanism by which high copper diets restrain pig growth. Therefore, to address the concerns and give a better understanding of the mechanism of high copper diet in restraining pig growth in different systems, this paper reviews the research progress of long-term supplementation of high copper on the growth of pigs and provides some suggestions and further research directions.
Assuntos
Ração Animal/análise , Cobre/administração & dosagem , Suplementos Nutricionais , Suínos/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , AnimaisRESUMO
Soya bean agglutinin (SBA) is a glycoprotein and the main anti-nutritional component in most soya bean feedstuffs. It is mainly a non-fibre carbohydrate-based protein and represents about 10% of soya bean-based anti-nutritional effects. In this study, we sought to determine the effects of N-Acetyl-D-galactosamine (GalNAc or D-GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC-J2) cells. The IPEC-J2 cells were pre-cultured with 0, 0.125 × 10-4 , 0.25 × 10-4 , 0.5 × 10-4 , 1.0 × 10-4 and 2.0 × 10-4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre-incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans-epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre-treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin-3 were lower in the SBA-treated groups without pre-treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin-3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre-treated groups, occludin and claudin-3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC-J2s.
Assuntos
Acetilgalactosamina/farmacologia , Aglutininas/toxicidade , Células Epiteliais/efeitos dos fármacos , Glycine max/química , Mucosa Intestinal/citologia , Suínos , Acetilgalactosamina/administração & dosagem , Aglutininas/farmacologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Células Epiteliais/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Permeabilidade , RNA/genética , RNA/metabolismoRESUMO
Eleutheroside B (EB) is a phenylpropanoid glycoside with anti-inflammatory properties, neuroprotective abilities, immunomodulatory effects, antinociceptive effects, and regulation of blood glucose. The aim of this study was to investigate the effects of EB on the barrier function in the intestinal porcine epithelial cells J2 (IPEC-J2). The IPEC-J2 cells were inoculated into 96-well plates at a density of 5 × 103 cells per well for 100% confluence. The cells were cultured in the presence of EB at concentrations of 0, 0.05, 0.10, and 0.20 mg/ml for 48 hr. Then, 0.10 mg/ml was selected as the suitable concentration for the estimation of transepithelial electric resistance (TEER) value, alkaline phosphatase activity, proinflammatory cytokines mRNA expression, tight junction mRNA and protein expression. The results of this study indicated that the supplementation of EB in IPEC-J2 cells decreased cellular membrane permeability and mRNA expression of proinflammatory cytokines, including interleukin-6 (IL-6), interferon-γ (INF-γ), and tumour necrosis factor-α (TNF-α). The supplementation of EB in IPEC-J2 cells increased tight junction protein expression and anti-inflammatory cytokines, interleukin 10 (IL-10) and transforming growth factor beta (TGF-ß). In addition, the western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that EB significantly (p < 0.05) increased the mRNA and protein expression of intestinal tight junction proteins, Claudin-3, Occludin, and Zonula Occludins protein-1 (ZO-1). Therefore, dietary supplementation of EB may increase intestinal barrier function, tight junction protein expression, anti-inflammatory cytokines, and decrease proinflammatory cytokines synthesis in IPEC-J2 cells.
Assuntos
Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Fenilpropionatos/farmacologia , Suínos , Proteínas de Junções Íntimas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Citocinas/genética , Relação Dose-Resposta a Droga , Glucosídeos/administração & dosagem , Jejuno/citologia , Fenilpropionatos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Junções Íntimas/genéticaRESUMO
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Assuntos
Arginina/farmacologia , Suplementos Nutricionais , Fertilização/efeitos dos fármacos , Desmame , Animais , Crescimento e Desenvolvimento/efeitos dos fármacos , SuínosRESUMO
BACKGROUND: Pleurotus ostreatus mushroom (POM) is an edible mushroom with rich nutritional components and vital pharmacological properties. The present study comprised 100 cross-bred piglets, weaned at 28 days old, who were randomly assigned to four POM diets with five replicates per diet and five piglets per pen. RESULTS: POM supplementation (P < 0.05) decreased the incidence of diarrhea, and also increased the average daily feed intake and average daily gain of pigs. Fecal acetate, butyrate and propionate increased with the addition of POM. Interleukin-2, immunoglobulin G, immunoglobulin M, tumor necrosis factor-α and immunoglobulin A increased (P < 0.05) with the addition of POM. The 16S rDNA sequencing results showed that the Bacteroidetes and Firmicutes were the dominant microbial strains in the fecal samples, irrespective of POM supplementation. Shannon diversity, whole tree phylogenetic diversity, observed species and Chao1 analysis exhibited significant variation in species richness across the treatments. Principal coordinates analysis showed a significant (P < 0.1) increase in the microbial communities amongst all of the treatment groups. CONCLUSION: The results of the present study suggest that the supplementation of POM in the diet of piglets might increase feed consumption, gut microbial composition and diversity, as well as short-chain fatty acids synthesis, consequently preventing the occurrence of diarrhea and increasing the growth of piglets. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Ração Animal/análise , Diarreia/veterinária , Microbioma Gastrointestinal , Pleurotus/metabolismo , Doenças dos Suínos/imunologia , Suínos/crescimento & desenvolvimento , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Fezes , Feminino , Imunidade , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Microbiota , Suínos/imunologia , Suínos/metabolismo , Suínos/microbiologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controleRESUMO
L-Homoarginine (hArg) ((2S)-amino-6-Carbamimidamidohexanoic acid) is a non-essential cationic amino acid that may be synthesised from the lysine catabolism or the transamination of its precursor (Arginine: Arg). These processes involve the use of the ornithine transcarbamoylase (OTC), an enzyme from the urea cycle or the arginine: glycine amidinotransferase (AGAT), an enzyme from the creatine biosynthesis pathway. These enzymes are tissue-specific, hence they synthesised L-hArg in animals and human organs such as the liver, kidneys, brains, and the small intestines. L-hArg plays some important roles in the pathophysiological conditions, endothelial functions, and the energy metabolic processes in different organs. These functions depend on the concentrations of the available LhArg in the body. These different concentrations of the L-hArg in the body are related to the different disease conditions such as the T2D mellitus, the cardiovascular and the cerebrovascular diseases, the chronic kidney diseases, the intrauterine growth restriction (IUGR) and the preeclampsia (PE) in pregnancy disorders, and even mortality. However, the applications of the L-hArg in both human and animal studies is in its juvenile stage, and the mechanism of action in this vital amino acid is not fully substantiated and requires more research attention. Hence, we review the evidence with the perspective of the LhArg usage in the monogastric and human nutrition and its related health implications.
Assuntos
Homoarginina , Amidinotransferases/metabolismo , Animais , Vias Biossintéticas/fisiologia , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Feminino , Retardo do Crescimento Fetal/metabolismo , Homoarginina/biossíntese , Homoarginina/metabolismo , Homoarginina/farmacologia , Humanos , Gravidez , Insuficiência Renal Crônica/metabolismoRESUMO
Astragalus membranaceus is an herbaceous perennial plant, growing to about 2 feet tall, with sprawling stems and alternate leaves about 12-24 leaflets. In total, 24 cross bred (Duroc × Landrace × Yorkshire) piglets weaned at 4 weeks with an average body weight of 10.84 ± 1.86 kg, were divided into four groups and randomly assigned to dietary treatments containing different AMSLF levels (0.00%, 2.50%, 5.00%, and 7.50%). The piglets in the control group (0.00% AMSLF) were fed basal diet and other treatment groups were fed basal diet in addition to 2.50%, 5.00%, and 7.50% pulverized AMSLF. The results indicated that supplementation with AMSLF significantly (p < 0.05) decreased diarrheal incidence in piglets. There was significant difference between treatment in terms of ADFI, ADG and FCR. Both 5.00% and 7.50% treatments significantly increased growth performance. The digestibility of gross energy and dry matter increased (p > 0.05) with increasing AMSLF level. The level of blood IL-2 and TNF-α were significantly affected by AMSLF supplementation with 7.50% AMSLF group having higher (p < 0.05) IL-2 and TNF-α levels than the other treatment groups. The 16SrDNA sequencing results from the four treatments showed that the potentially active bacterial microbial population and diversity in pig cecum were dominated by the phyla Bacteriodetes and Firmicutes regardless of the AMSLF supplementation. The Shannon diversity, PD whole tree diversity indices and Chao analyses exhibited significant variability in species richness across the treatments. The principal coordinates analysis (PCoA) showed significant (p < 0.1) differences between bacterial communities in all treatment groups. Results from the current study suggested that AMSLF supplementation increased composition of bacterial microbiota in pig gut. In conclusion, dietary supplements with AMSLF could potentially be used to prevent diarrheal incidence and improved pig production.
Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/imunologia , Astragalus propinquus/química , Bactérias/classificação , Diarreia/veterinária , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/análise , Animais , Bactérias/genética , Biota , Ceco/microbiologia , Análise por Conglomerados , Citocinas/sangue , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Diarreia/prevenção & controle , Incidência , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , SuínosRESUMO
Dietary alfalfa fiber (AF) is conceived to modulate gut microbial richness and diversity to improve the health and growth of weaning piglets. The objective of this study was to evaluate the prebiotic effects of AF on diarrhea incidence, the production of short-chain fatty acids (SCFAs), and microbiota composition in weaning piglets. This study utilized 100 crossbred piglets (Duroc × Landrace × Yorkshire) with a body weight of 8.42 ± 1.88 kg randomly assigned to the following treatments: 0.00% AF meal (A), 6.00% of AF meal (B), 12.00% AF meal (C), and 18.00% AF meal (D). The cecum samples were used to determine microbial community composition and diversity through high-throughput 16S rDNA sequencing. The results of this study show that the lowest average daily gain (ADG) was observed in treatment D, and the highest ADG was recorded in treatment C. However there was no significant difference between the treatment groups and the control. The average daily feed intake (ADFI) was significantly higher in treatment C compared to the other treatments. The feed conversion ratio was high in the control group compared to the AF treated groups. The highest diarrhea incidence was observed in treatment A and the lowest diarrhea incidence was observed in treatment C and D. The highest acetate and propionate levels were observed in treatment B, but there was no significant difference between the treatment groups and the control. The supplementation of AF significantly increased the butyrate level in treatment D compared with treatments A and B but was not significantly different from treatment C. The Observed_species richness and Simpson diversity values of the cecum bacterial composition in the AF fed piglets were higher than the control. In addition, the Chao 1 richness and Shannon diversity increased with an increase in AF supplementation, reaching a plateau at treatment B and C, then decreasing at treatment D. The Bacteroidetes, Firmicutes, Tenericutes, Proteobacteria, Cyanobacteria, Spirochaetae, Actinobacteria, Fibrobacteres, Saccharibacteria, Synergistetes, Chlamydiae, Elusimicrobia, Deferribacteres, Fusobacteria, and others were relatively abundant in all treatments. The Bacteroidetes and Firmicutes were the dominant phyla, accounting for 98% of all reads. AF treatment decreased the Bacteroidetes phylum and increased the Firmicutes phylum compared with treatment A. Therefore, the dietary inclusion of AF may decrease diarrhea incidence, increase cecal bacterial composition and richness, and consequently improve the growth performance of weaning piglets.
RESUMO
The relation between dietary fibre and the well-being of human and other monogastrics has recently became a hot topic as shown by the increasing number of publications of the related research. The aim of this review is to describe - through a logical approach - the scientific suggestion linking possible benefits of dietary fibre on nutritional components and their effect on the gastrointestinal composition in relation to disease conditions in humans and animals. Dietary fibre plays a key role in: influencing blood glucose or insulin concentrations, stool bulkiness, reducing the pH within the digestive tract, synthesising volatile fatty acids (VFA), reducing intestinal transit time, stimulating growth of intestinal microbes, and constructively enhancing various blood parameters. The available literature suggests that fibre influences the bioavailability of nutrients and maintains the host's well-being by controlling disorders and disease prevalent with a Western way of living such as constipation and diarrhoea, diabetes, obesity, gastrointestinal inflammation, atherosclerosis, and colon cancer. Although there are some studies demonstrating that dietary fibre may be effective in the prevention and treatment of these disorders, the mechanisms involved are yet to be understood.