Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurooncol Adv ; 5(1): vdad108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781088

RESUMO

Background: Hypersomnolence is a common and disruptive side effect of cranial radiotherapy and is associated with fatigue and disturbances in mood and cognition in primary brain tumor (PBT) patients. The biological underpinnings of this effect are not understood. Our laboratory has previously found that the presence of a single nucleotide polymorphism (rs934945, G-E mutation) in the PERIOD2 (PER2) clock gene was associated with a decreased likelihood of fatigue in PBT patients. Here, we aim to understand the effects of PER2 polymorphism on radiation susceptibility within a murine model of cranial-irradiation-induced hypersomnolence (C-RIH). Methods: Male and female transgenic mice were generated using CRISPR-Cas9, replacing the endogenous mouse PER2:CRY1 binding domain with its human isoform with (hE1244 KI) or without the SNP rs934945 (hG1244 KI). Activity and sleep were monitored continuously 10 days before and after cranial irradiation (whole brain, 15Gy, single fraction). Behavioral assessments measuring anxiety, depression, and working memory were used to assess mood and cognitive changes 2 months postradiation. Results: During their active phase, hE1244 knock-ins (KIs) had less radiation-induced suppression of activity relative to hG1244 KIs and female hE1244 KIs saw a reduction of hypersomnolence over 10 days. hE1244 KIs displayed less anxiety behavior and were more ambulatory within all behavioral tests. Conclusions: The PER2 rs934945 polymorphism had long-lasting behavioral effects associated with radiation toxicity, particularly in sleep in females and the activity of all animals. Our findings shed light on biological mechanisms underlying C-RIH.

2.
Neuron ; 111(14): 2218-2231.e4, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37207651

RESUMO

Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.


Assuntos
Gânglios da Base , Punição , Corpo Estriado , Globo Pálido/fisiologia , Movimento/fisiologia
3.
J Neurooncol ; 162(1): 137-145, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36884201

RESUMO

PURPOSE: Cancer patients experience distress and anxiety when undergoing imaging studies to monitor disease status, yet these symptoms are not always appropriately identified or well-managed. This interim analysis of a phase 2 clinical trial explored feasibility and acceptability of a virtual reality relaxation (VR) intervention for primary brain tumor (PBT) patients at the time of clinical evaluation. METHODS: English speaking, adult PBT patients with previous reports of distress and upcoming neuroimaging were recruited between March of 2021 and March 2022. A brief VR session was done within 2 weeks prior to neuroimaging with patient-reported outcomes (PROs) collected before and immediately post-intervention. Self-directed VR use over the next 1 month was encouraged with additional PROs assessments at 1 and 4 weeks. Feasibility metrics included enrollment, eligibility, attrition, and device-related adverse effects with satisfaction measured with qualitative phone interviews. RESULTS: Fifty-five patients were approached via email, 40 (73%) responded and 20 (50%) enrolled (9 declines, 11 screen fails). 65% of participants were ≤ 50 years, 50% were male, 90% were White/non-Hispanic, 85% had good KPS (≥ 90), and most were on active treatment. All patients completed the VR intervention, PROs questionnaires, weekly check-ins, and qualitative interview. Most (90%) reported frequent VR use and high satisfaction and only 7 mild AEs were recorded (headache, dizziness, nausea, neck pain). CONCLUSION: This interim analysis supports feasibility and acceptability of a novel VR intervention to target psychological symptoms for PBT patients. Trial enrollment will continue to assess for intervention efficacy. TRIAL REGISTRATION: NCT04301089 registered on 3/9/2020.


Assuntos
Neoplasias Encefálicas , Terapia de Exposição à Realidade Virtual , Adulto , Humanos , Masculino , Feminino , Estudos de Viabilidade , Ansiedade/etiologia , Ansiedade/terapia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/terapia
4.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36789426

RESUMO

Purpose: Cancer patients experience distress and anxiety when undergoing imaging studies to monitor disease status, yet these symptoms are not always appropriately identified or well-managed. This interim analysis of a phase 2 clinical trial explored feasibility and acceptability of a virtual reality relaxation (VR) intervention for primary brain tumor (PBT) patients at the time of clinical evaluation. Methods: English speaking, adult PBT patients with previous reports of distress and upcoming neuroimaging were recruited between March of 2021 and March 2022. A brief VR session was done within 2 weeks prior to neuroimaging with patient-reported outcomes (PROs) collected before and immediately post-intervention. Self-directed VR use over the next 1 month was encouraged with additional PROs assessments at 1 and 4 weeks. Feasibility metrics included enrollment, eligibility, attrition, and device-related adverse effects with satisfaction measured with qualitative phone interviews. Results: 55 patients were approached via email, 40 (73%) responded and 20 (50%) enrolled (9 declines, 11 screen fails). 65% of participants were ≤ 50 years, 50% were male, 90% were White/non-Hispanic, 85% had good KPS (≥ 90), and most were on active treatment. All patients completed the VR intervention, PROs questionnaires, weekly check-ins, and qualitative interview. Most (90%) reported frequent VR use and high satisfaction and only 7 mild AEs were recorded (headache, dizziness, nausea, neck pain). Conclusion: This interim analysis confirmed feasibility and acceptability of a novel VR intervention to target psychological symptoms for PBT patients. Trial enrollment will continue to assess for intervention efficacy. Trial Registration: NCT04301089 registered on 3/9/2020.

5.
Sci Rep ; 12(1): 11131, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778467

RESUMO

Disrupted sleep, including daytime hypersomnolence, is a core symptom reported by primary brain tumor patients and often manifests after radiotherapy. The biological mechanisms driving the onset of sleep disturbances after cranial radiation remains unclear but may result from treatment-induced injury to neural circuits controlling sleep behavior, both circadian and homeostatic. Here, we develop a mouse model of cranial radiation-induced hypersomnolence which recapitulates the human experience. Additionally, we used the model to explore the impact of radiation on the brain. We demonstrated that the DNA damage response following radiation varies across the brain, with homeostatic sleep and cognitive regions expressing higher levels of γH2AX, a marker of DNA damage, than the circadian suprachiasmatic nucleus (SCN). These findings were supported by in vitro studies comparing radiation effects in SCN and cortical astrocytes. Moreover, in our mouse model, MRI identified structural effects in cognitive and homeostatic sleep regions two-months post-treatment. While the findings are preliminary, they suggest that homeostatic sleep and cognitive circuits are vulnerable to radiation and these findings may be relevant to optimizing treatment plans for patients.


Assuntos
Ritmo Circadiano , Distúrbios do Sono por Sonolência Excessiva , Animais , Encéfalo , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Camundongos , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA