Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Redox Rep ; 27(1): 111-118, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35535549

RESUMO

Objectives: This study investigated the impact of rohypnol on gastric tissue integrity.Methods: Forty male Wistar rats were randomized into control, low dose rohypnol-treated, high dose rohypnol-treated, low dose rohypnol-treated recovery and high dose rohypnol-treated recovery groups.Results: Rohypnol caused significant rise in gastric malondialdehyde (MDA), oxidized glutathione (GSSG), nitric oxide (NO), tumour necrotic factor-α (TNF-α), and interleukin-6 (IL-6) levels. Also, rohypnol caused reductions in gastric reduced glutathione (GSH) (as well as GSH/GSSG), and activities of superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), glutathione peroxidase (GPx), cyclo-oxygenase (COX-2). Furthermore, rohypnol upregulated caspase 3 activity and induced gastric DNA damage, evident by a rise in 8-hydroxydeoxyguanosine (8-OHdG) and DNA fragmentation index (DFI) in gastric tissue. These alterations were coupled with reduced gastric weight and distorted gastric cytoarchitecture. Cessation of rohypnol caused a significant but not complete reversal of rohypnol-induced gastric damage.Conclusion: This study revealed that rohypnol induced gastric injury by suppressing glutathione content and COX-2 activity, and upregulating caspase 3-dependent apoptosis, which was partly reversed by rohypnol withdrawal.


Assuntos
Flunitrazepam , Glutationa , Animais , Apoptose , Caspase 3/metabolismo , Ciclo-Oxigenase 2/genética , Glutationa/metabolismo , Dissulfeto de Glutationa , Glutationa Peroxidase/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA