Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 3035, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600088

RESUMO

People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.


Assuntos
Senilidade Prematura , Infecções por HIV , Masculino , Humanos , Feminino , Imunoglobulina G , Estudos Transversais , Envelhecimento , Inflamação/complicações , Polissacarídeos
2.
Sci Adv ; 9(44): eadh4379, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910620

RESUMO

Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Produtos Biológicos/metabolismo , Células Matadoras Naturais , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
3.
bioRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37609144

RESUMO

People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.

4.
mBio ; 14(1): e0339322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728420

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/metabolismo , Células Matadoras Naturais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
5.
EBioMedicine ; 86: 104354, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371982

RESUMO

Siglecs are a family of emerging glyco-immune checkpoints. Inhibiting them can enhance the functions of several types of immune cells, whereas engaging them can reduce hyper-inflammation and hyper-activation of immune functions. Siglec-sialoglycan interactions play an important role in modulating immunological functions during cancer, however, their roles in regulating immunological equilibrium during viral infections is less clear. In this review, we discuss the documented and potential roles of inhibitory Siglecs in balancing immune activation and tolerance during viral infections and consider how this balance could affect both the desired anti-viral immunological functions and the unwanted hyper- or chronic inflammation. Finally, we discuss the opportunities to target the Siglec immunological switches to reach an immunological balance during viral infections: inhibiting specific Siglec-sialoglycan interactions when maximum anti-viral immune responses are needed, or inducing other interactions when preventing excessive inflammation or reducing chronic immune activation are the goals.


Assuntos
Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Viroses , Humanos , Ácido N-Acetilneuramínico , Tolerância Imunológica , Inflamação
6.
Methods Mol Biol ; 2442: 463-474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320541

RESUMO

The ß-galactoside-binding protein Galectin-9 (Gal-9) functions as a double-edged sword during HIV infection. On the one hand, Gal-9 can reactivate HIV latently infected cells, the main barrier to achieving HIV eradication, making them visible to immune clearance. On the other hand, Gal-9 induces latent HIV transcription by activating T cell Receptor (TCR) signaling pathways. These signaling pathways induce undesirable pro-inflammatory responses. While these unwanted responses can be mitigated by rapamycin without impacting Gal-9-mediated latent HIV reactivation, this effect raises the concern that Gal-9 may play a role in the chronic immune activation/inflammation that persists in people living with HIV despite antiretroviral therapy. Together, these data highlight the need to understand the positive and negative impacts of galectin interactions on immunological functions during HIV infection. In this chapter, we describe methods that can be used to investigate the effects of galectins, in particular Gal-9, on latent HIV transcription in vitro and ex vivo.


Assuntos
Galectinas , Infecções por HIV , HIV-1 , Latência Viral , Galectinas/genética , Galectinas/fisiologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Transdução de Sinais , Transcrição Gênica , Latência Viral/genética
7.
Front Oncol ; 11: 778989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869028

RESUMO

Sialic acid-binding Immunoglobulin-like lectin-9 (Siglec-9) is a glyco-immune negative checkpoint expressed on several immune cells. Siglec-9 exerts its inhibitory effects by binding to sialoglycan ligands expressed on cancer cells, enabling them to evade immunosurveillance. We developed a panel of human anti-Siglec-9 hybridoma clones by immunizing mice with Siglec-9-encoding DNA and Siglec-9 protein. The lead antibodies, with high specificity and functionality against Siglec-9, were identified through screening of clones. The in vitro cytotoxicity assays showed that our lead antibody enhances anti-tumor immune activity. Further, in vivo testing utilizing ovarian cancer humanized mouse model showed a drastic reduction in tumor volume. Together, we developed novel antibodies that augment anti-tumor immunity through interference with Siglec-9-mediated immunosuppression.

8.
PLoS Pathog ; 17(11): e1010034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762717

RESUMO

Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.


Assuntos
Antígenos CD/metabolismo , Antígeno CD56/imunologia , Infecções por HIV/patologia , HIV/fisiologia , Células Matadoras Naturais/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Carga Viral , Viremia/patologia , Antígenos CD/genética , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Células Matadoras Naturais/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Viremia/imunologia , Viremia/metabolismo , Viremia/virologia
9.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34604818

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Pulmão/virologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/uso terapêutico , Feminino , Injeções Intradérmicas , Macaca mulatta , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/uso terapêutico , Carga Viral
11.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879594

RESUMO

Beyond neutralization, antibodies binding to their Fc receptors elicit several innate immune functions including antibody-dependent complement deposition (ADCD), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). These functions are beneficial, as they contribute to pathogen clearance; however, they also can induce inflammation. We tested the possibility that qualitative differences in SARS-CoV-2-specific antibody-mediated innate immune functions contribute to coronavirus disease 2019 (COVID-19) severity. We found that anti-S1 and anti-RBD antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from nonhospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation, whereas higher ADCP was associated with lower systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 specific antibodies as potential contributors to COVID-19 severity. Understanding these qualitative features of natural and vaccine-induced antibodies will be important in achieving optimal efficacy and safety of SARS-CoV-2 vaccines and/or COVID-19 therapeutics.IMPORTANCE A state of hyperinflammation and increased complement activation has been associated with coronavirus disease 2019 (COVID-19) severity. However, the pathophysiological mechanisms that contribute to this phenomenon remain mostly unknown. Our data point to a qualitative, rather than quantitative, difference in SARS-CoV-2-specific antibodies' ability to elicit Fc-mediated innate immune functions as a potential contributor to COVID-19 severity and associated inflammation. These data highlight the need for further studies to understand these qualitative features and their potential contribution to COVID-19 severity. This understanding could be essential to develop antibody-based COVID-19 therapeutics and SARS-CoV-2 vaccines with an optimal balance between efficacy and safety.


Assuntos
Anticorpos Antivirais , COVID-19/imunologia , Imunidade Inata , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Biomarcadores/sangue , COVID-19/etiologia , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Ativação do Complemento , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Inflamação/sangue , Inflamação/etiologia , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , Fagocitose , Receptores Fc/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
12.
Cell Rep ; 32(5): 107991, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755584

RESUMO

A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.


Assuntos
Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/metabolismo , HIV/genética , Antígeno Sialil Lewis X/metabolismo , Transcrição Gênica , Linfócitos T CD4-Positivos/imunologia , Carboidratos/química , Linhagem Celular , Membrana Celular/metabolismo , Fucose/metabolismo , Glicômica , Glicosilação , Infecções por HIV/imunologia , Humanos , Memória Imunológica , Ligantes , Ativação Linfocitária/imunologia
13.
AIDS ; 32(11): F5-F13, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29762161

RESUMO

OBJECTIVE: Worldwide, most new HIV infections occur through mucosal exposure. Immunoglobulin M (IgM) is the first antibody class generated in response to infectious agents; IgM is present in the systemic circulation and in mucosal fluids as secretory IgM. We sought to investigate for the first time the role of IgM in preventing AIDS virus acquisition in vivo. DESIGN: Recombinant polymeric monoclonal IgM was generated from the neutralizing monoclonal IgG1 antibody 33C6-IgG1, tested in vitro, and given by passive intrarectal immunization to rhesus macaques 30 min before intrarectal challenge with simian-human immunodeficiency virus (SHIV) that carries an HIV-1 envelope gene. RESULTS: In vitro, 33C6-IgM captured virions more efficiently and neutralized the challenge SHIV with a 50% inhibitory molar concentration (IC50) that was 1 log lower than that for 33C6-IgG1. The IgM form also exhibited significantly higher affinity and avidity compared with 33C6-IgG1. After intrarectal administration, 33C6-IgM prevented viremia in four out of six rhesus macaques after high-dose intrarectal SHIV challenge. Five out of six rhesus macaques given 33C6-IgG1 were protected at a five times higher molar concentration compared with the IgM form; all untreated controls became highly viremic. Rhesus macaques passively immunized with 33C6-IgM with breakthrough infection had notably early development of autologous neutralizing antibody responses. CONCLUSION: Our primate model data provide the first proof-of-concept that mucosal IgM can prevent mucosal HIV transmission and have implications for HIV prevention and vaccine development.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Anticorpos Anti-HIV/administração & dosagem , Imunoglobulina M/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Administração Retal , Animais , Anticorpos Monoclonais/genética , Anticorpos Anti-HIV/genética , Imunização Passiva , Imunoglobulina M/genética , Macaca mulatta , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Resultado do Tratamento
14.
Neuroendocrinology ; 103(3-4): 269-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26159182

RESUMO

Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)ß and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered the following for 2 weeks: estradiol, ERß agonist (diarylpropionitrile, DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant-like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB, but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERß and GPR30 agonists whereas Akt activation may not be necessary.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ovariectomia , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/farmacologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Reação de Congelamento Cataléptica/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Natação/psicologia
15.
Int J Neuropsychopharmacol ; 17(5): 765-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24423185

RESUMO

Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor ß (ERß) and/or GPR30 activation, whereas estradiol's blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERß (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERß was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol's or PPT's inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1, but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function, and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Feminino , Fluvoxamina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nitrilas/farmacologia , Ovariectomia , Fenóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Receptor trkB/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
16.
Biol Psychiatry ; 71(7): 633-41, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22225849

RESUMO

BACKGROUND: Ovarian hormones may contribute to the vulnerability to depression, as well as to the response to antidepressants (ADs). Previously, we reported that acute systemic treatment with estradiol or progesterone blocked the ability of the selective serotonin reuptake inhibitor, fluvoxamine, to inhibit serotonin transporter function in ovariectomized rats. In this study, behavioral consequences, as well as receptor mechanisms underlying these hormonal effects, were investigated. METHODS: Using the forced swimming test, the acute effect of estradiol and/or progesterone on fluvoxamine's AD-like effects was investigated. Using in vivo chronoamperometry, the effect of local application of estradiol or progesterone into the hippocampus of ovariectomized rats on serotonin (5-HT) clearance, as well as on the ability of fluvoxamine to slow 5-HT clearance, were investigated. RESULTS: The decreased immobility and increased swimming caused by fluvoxamine in the forced swimming test was blocked in rats treated with estradiol and/or progesterone. Local application of estradiol, but not progesterone, slowed 5-HT clearance and both hormones blocked the ability of fluvoxamine to slow 5-HT clearance. Use of hormone receptor agonists and antagonists, revealed that the effects of estradiol are mediated by activation of membrane, as well as nuclear estrogen receptors (ER). The AD-like effect of estradiol involved ER beta and G-protein coupled receptor 30, whereas its blockade of fluvoxamine's effects was ER alpha-mediated. The effects of progesterone occurred solely by activation of intracellular progesterone receptors. CONCLUSIONS: Targeting of ER beta or G-protein coupled receptor 30 might reveal a strategy to permit beneficial effects of estrogen without its deleterious effect on selective serotonin reuptake inhibitor efficacy.


Assuntos
Estradiol/fisiologia , Fluvoxamina/antagonistas & inibidores , Hipocampo/metabolismo , Progesterona/fisiologia , Receptores de Progesterona/fisiologia , Serotonina/metabolismo , Animais , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Fluvoxamina/farmacologia , Hipocampo/efeitos dos fármacos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Resposta de Imobilidade Tônica/fisiologia , Microinjeções , Progesterona/administração & dosagem , Progesterona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/fisiologia , Receptores de Progesterona/agonistas , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA