Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 18: 1286872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505323

RESUMO

Methamphetamine is a highly abused psychostimulant that substantially impacts public health. Prenatal and postnatal methamphetamine exposure alters gene expression, brain development, and behavior in the offspring, although the underlying mechanisms are not fully defined. To assess these adverse outcomes in the offspring, we employed a mouse model of prenatal and postnatal methamphetamine exposure. Juvenile offspring were behaviorally assessed on the open field, novel object recognition, Y-maze, and forced swim tests. In addition, RNA sequencing was used to explore potential alterations in prefrontal cortical gene expression. We found that methamphetamine-exposed mice exhibited decreased locomotor activity and impaired cognitive performance. In addition, differential expression of genes involved in neurotransmission, synaptic plasticity, and neuroinflammation were found with notable changes in dopaminergic signaling pathways. These data suggest potential neural and molecular mechanisms underlying methamphetamine-exposed behavioral changes. The altered expression of genes involved in dopaminergic signaling and synaptic plasticity highlights potential targets for therapeutic interventions for substance abuse disorders and related psychiatric complications.

2.
Ann Neurol ; 94(6): 1048-1066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605362

RESUMO

OBJECTIVE: Because the role of white matter (WM) degenerating microglia (DM) in remyelination failure is unclear, we sought to define the core features of this novel population of aging human microglia. METHODS: We analyzed postmortem human brain tissue to define a population of DM in aging WM lesions. We used immunofluorescence staining and gene expression analysis to investigate molecular mechanisms related to the degeneration of DM. RESULTS: We found that DM, which accumulated myelin debris were selectively enriched in the iron-binding protein light chain ferritin, and accumulated PLIN2-labeled lipid droplets. DM displayed lipid peroxidation injury and enhanced expression for TOM20, a mitochondrial translocase, and a sensor of oxidative stress. DM also displayed enhanced expression of the DNA fragmentation marker phospho-histone H2A.X. We identified a unique set of ferroptosis-related genes involving iron-mediated lipid dysmetabolism and oxidative stress that were preferentially expressed in WM injury relative to gray matter neurodegeneration. INTERPRETATION: Ferroptosis appears to be a major mechanism of WM injury in Alzheimer's disease and vascular dementia. WM DM are a novel therapeutic target to potentially reduce the impact of WM injury and myelin loss on the progression of cognitive impairment. ANN NEUROL 2023;94:1048-1066.


Assuntos
Ferroptose , Substância Branca , Humanos , Microglia/metabolismo , Substância Branca/patologia , Envelhecimento/patologia , Encéfalo/patologia
3.
Brain Sci ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371370

RESUMO

Autism spectrum disorder (ASD) is associated with neurodevelopmental alterations, including atypical forebrain cellular organization. Mutations in several ASD-related genes often result in cerebral cortical anomalies, such as the abnormal developmental migration of excitatory pyramidal cells and the malformation of inhibitory neuronal circuitry. Notably here, mutations in the CNTNAP2 gene result in ectopic superficial cortical neurons stalled in lower cortical layers and alterations to the balance of cortical excitation and inhibition. However, the broader circuit-level implications of these findings have not been previously investigated. Therefore, we assessed whether ectopic cortical neurons in CNTNAP2 mutant mice form aberrant connections with higher-order thalamic nuclei, potentially accounting for some autistic behaviors, such as repetitive and hyperactive behaviors. Furthermore, we assessed whether the development of parvalbumin-positive (PV) cortical interneurons and their specialized matrix support structures, called perineuronal nets (PNNs), were altered in these mutant mice. We found alterations in both ectopic neuronal connectivity and in the development of PNNs, PV neurons and PNNs enwrapping PV neurons in various sensory cortical regions and at different postnatal ages in the CNTNAP2 mutant mice, which likely lead to some of the cortical excitation/inhibition (E/I) imbalance associated with ASD. These findings suggest neuroanatomical alterations in cortical regions that underlie the emergence of ASD-related behaviors in this mouse model of the disorder.

4.
ASN Neuro ; 14: 17590914221123138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164936

RESUMO

A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.


Assuntos
Envelhecimento , Encéfalo , Receptores de Hialuronatos , Primatas , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Variação Genética , Humanos , Receptores de Hialuronatos/genética , Imuno-Histoquímica , Hibridização In Situ , Lipofuscina/química , Camundongos , Primatas/genética
5.
Geroscience ; 44(4): 1-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612774

RESUMO

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/complicações , Imagem de Tensor de Difusão/métodos , Bradicinina , Vasodilatadores
6.
Neuroscience ; 484: 119-138, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800576

RESUMO

A spontaneous mutation of the disrupted in schizophrenia 1 (Disc1) gene is carried by the 129S inbred mouse strain. Truncated DISC1 protein in 129S mouse synapses impairs the scaffolding of excitatory postsynaptic receptors and leads to progressive spine dysgenesis. In contrast, C57BL/6 inbred mice carry the wild-type Disc1 gene and exhibit more typical cognitive performance in spatial exploration and executive behavioral tests. Because of the innate Disc1 mutation, adult 129S inbred mice exhibit the behavioral phenotypes of outbred B6 Disc1 knockdown (Disc1-/-) or Disc1-L-100P mutant strains. Recent studies in Disc1-/- and L-100P mice have shown that impaired excitation-driven interneuron activity and low hippocampal theta power underlie the behavioral phenotypes that resemble human depression and schizophrenia. The current study compared the firing rate and connectivity profile of putative neurons in the CA1 of freely behaving inbred 129S and B6 mice, which have mutant and wild-type Disc1 genes, respectively. In cognitive behavioral tests, 129S mice had lower exploration scores than B6 mice. Furthermore, the mean firing rate for 129S putative pyramidal (pyr) cells and interneurons (int) was significantly lower than that for B6 CA1 neurons sampled during similar tasks. Analysis of pyr/int connectivity revealed a significant delay in synaptic transmission for 129S putative pairs. Sampled 129S pyr/int pairs also had lower detectability index scores than B6 putative pairs. Therefore, the spontaneous Disc1 mutation in the 129S strain attenuates the firing of putative pyr CA1 neurons and impairs spike timing fidelity during cognitive tasks.


Assuntos
Proteínas do Tecido Nervoso , Esquizofrenia , Animais , Cognição , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Esquizofrenia/genética
7.
Front Cell Neurosci ; 15: 670298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211370

RESUMO

Since December 2019, humankind has been experiencing a ravaging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, the second coronavirus pandemic in a decade after the Middle East respiratory syndrome coronavirus (MERS-CoV) disease in 2012. Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19), which is responsible for over 3.1 million deaths worldwide. With the emergence of a second and a third wave of infection across the globe, and the rising record of multiple reinfections and relapses, SARS-CoV-2 infection shows no sign of abating. In addition, it is now evident that SARS-CoV-2 infection presents with neurological symptoms that include early hyposmia, ischemic stroke, meningitis, delirium and falls, even after viral clearance. This may suggest chronic or permanent changes to the neurons, glial cells, and/or brain vasculature in response to SARS-CoV-2 infection or COVID-19. Within the central nervous system (CNS), microglia act as the central housekeepers against altered homeostatic states, including during viral neurotropic infections. In this review, we highlight microglial responses to viral neuroinfections, especially those with a similar genetic composition and route of entry as SARS-CoV-2. As the primary sensor of viral infection in the CNS, we describe the pathogenic and neuroinvasive mechanisms of RNA viruses and SARS-CoV-2 vis-à-vis the microglial means of viral recognition. Responses of microglia which may culminate in viral clearance or immunopathology are also covered. Lastly, we further discuss the implication of SARS-CoV-2 CNS invasion on microglial plasticity and associated long-term neurodegeneration. As such, this review provides insight into some of the mechanisms by which microglia could contribute to the pathophysiology of post-COVID-19 neurological sequelae and disorders, including Parkinson's disease, which could be pervasive in the coming years given the growing numbers of infected and re-infected individuals globally.

8.
J Vis Exp ; (163)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986031

RESUMO

Optogenetic modulation of neuron sub-populations in the brain has allowed researchers to dissect neural circuits in vivo and ex vivo. This provides a premise for determining the role of neuron types within a neural circuit, and their significance in information encoding relative to learning. Likewise, the method can be used to test the physiological significance of two or more connected brain regions in awake and anesthetized animals. The current study demonstrates how VTA glutamate neurons modulate the firing rate of putative pyramidal neurons in the CA1 (hippocampus) of anesthetized mice. This protocol employs adeno-associated virus (AAV)-dependent labeling of VTA glutamate neurons for the tracing of VTA presynaptic glutamate terminals in the layers of the hippocampus. Expression of light-controlled opsin (channelrhodopsin; hChR2) and fluorescence protein (eYFP) harbored by the AAV vector permitted anterograde tracing of VTA glutamate terminals, and photostimulation of VTA glutamate neuron cell bodies (in the VTA). High-impedance acute silicon electrodes were positioned in the CA1 to detect multi-unit and single-unit responses to VTA photostimulation in vivo. The results of this study demonstrate the layer-dependent distribution of presynaptic VTA glutamate terminals in the hippocampus (CA1, CA3, and DG). Also, the photostimulation of VTA glutamate neurons increased the firing and burst rate of putative CA1 pyramidal units in vivo.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Área Tegmentar Ventral/anatomia & histologia , Área Tegmentar Ventral/fisiologia , Potenciais de Ação , Amplificadores Eletrônicos , Animais , Dependovirus/metabolismo , Fluorescência , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fibras Ópticas , Optogenética
9.
Neuroscience ; 446: 171-198, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652172

RESUMO

Reciprocal connection between the ventral tegmental area (VTA) and the hippocampus forms a loop that controls information entry into long-term memory. Compared with the widely studied VTA dopamine system, VTA glutamate terminals are anatomically dominant in the hippocampus and less understood. The current study employs anterograde and retrograde labeling of VTA dopamine and glutamate neurons to map the distribution of their terminals within the layers of the hippocampus. Also, functional tracing of VTA dopamine and glutamate projections to the hippocampus was performed by photostimulation of VTA cell bodies during CA1 extracellular voltage sampling in vivo. VTA dopamine terminals predominantly innervate the CA1 basal dendrite layer and modulate the firing rate of active putative neurons. In contrast, anatomical dominance of VTA glutamate terminals in the CA1 pyramidal cell and apical dendrite layers suggests the possible involvement of these terminals in excitability regulation. In support of these outcomes, photostimulation of VTA dopamine neurons increased the firing rate but not intrinsic excitability parameters for putative pyramidal units. Conversely, activation of VTA glutamate neurons increased CA1 network firing rate and burst rate. In addition, VTA glutamate inputs reduced the interspike and interburst intervals for putative CA1 neurons. Taken together, we deduced that layer-specific distribution of presynaptic dopamine and glutamate terminals in the hippocampus determinines VTA modulation (dopamine) or regulation (glutamate) of excitability in the CA1 neural network.


Assuntos
Dopamina , Área Tegmentar Ventral , Ácido Glutâmico , Hipocampo , Redes Neurais de Computação
10.
Psychopharmacology (Berl) ; 237(11): 3225-3236, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32651640

RESUMO

The asymptomatic and clinical stages of Parkinson's disease (PD) are associated with comorbid non-motor symptoms including gastrointestinal (GI) dysfunction. Although the neuroprotective and gastroprotective roles of kolaviron (KV) have been reported independently, whether KV-mediated GI-protective capacity could be beneficial in PD is unknown. We therefore investigated the modulatory effects of KV on the loss of dopaminergic neurons, locomotor abnormalities, and ileal oxidative damage when rats are lesioned in the nigrostriatal pathway. KV treatment markedly suppressed the behavioral deficit and apomorphine-induced rotations associated with rotenone lesioning. KV attenuated the loss of nigrostriatal dopaminergic neurons and perturbations in the striatal glucose-regulated protein (GRP78) and X-box binding protein 1 (XBP1) levels. Ileal epithelial injury following stereotaxic rotenone infusion was associated with oxidative stress and marked inhibition of acetylcholine esterase activity and reduced expression of occludin in the crypt and villi. While KV treatment attenuated the redox imbalance in the gut and enhanced occludin immunoreactivity, acetylcholinesterase activity was not affected. Our data demonstrate ileal oxidative damage as a characteristic non-motor gut dysfunction in PD while showing the potential dual efficacy of KV in the attenuation of both neural defects and gut abnormalities associated with PD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Flavonoides/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Flavonoides/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Rotenona/administração & dosagem , Técnicas Estereotáxicas , Substância Negra/metabolismo
11.
Dev Neurosci ; 42(1): 59-71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32580196

RESUMO

N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Proteína Duplacortina , Camundongos Endogâmicos C57BL , Densidade Pós-Sináptica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Environ Toxicol Pharmacol ; 78: 103412, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32439558

RESUMO

Although sexual health is affected by Parkinson's disease (PD), the effect on testicular health and/or sperm quality is not well discussed. After 21 days of rotenone lesioning, we observed dopaminergic neuronal degeneration in the substantia nigra and hypothalamus. There were minimal SPACA-1-expressing epididymal spermatozoa with morphological abnormalities, scanty luminal spermatozoa and reduced testicular spermatids and post-meiotic germ cells indicating hypospermatogenesis. Occludin-expressing sertoli cells were dispersed over a wide area indicating compromised blood-testes barrier. Activated caspase-3 expression was intense while immunoreactivity of spermatogenic-enhancing SRY and GADD45 g was weak. Although serum follicle stimulating hormone level was not affected, the lesion was associated with reduced serum testosterone level, testicular oxidative damage and inhibition of acetylcholinesterase activity, even when rotenone was not detected in the testes. Together, dopaminergic lesions may mediate testicular and sperm abnormalities via the brain-hypothalamic-testicular circuit independent of the pituitary, thereby establishing a causal link between Parkinsonism and reproductive dysfunction.


Assuntos
Neurônios Dopaminérgicos/patologia , Doença de Parkinson Secundária/patologia , Substância Negra/patologia , Testículo/patologia , Área Tegmentar Ventral/patologia , Acetilcolinesterase/metabolismo , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Ratos , Rotenona , Espermatozoides/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos
13.
J Neurochem ; 142(6): 790-811, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632905

RESUMO

One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.

14.
Metab Brain Dis ; 31(1): 93-107, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26088184

RESUMO

The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.


Assuntos
Comportamento Animal/efeitos dos fármacos , Alucinógenos/toxicidade , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Interações Medicamentosas , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos BALB C , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Destreza Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/patologia , Equilíbrio Postural/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA