Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 19(1): 178, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382879

RESUMO

BACKGROUND: The quest for novel sources of antibacterial compounds have necessitated the inclusion of ericoid mycorrhizal fungi (ERM) commonly found within the root of ericaceous plants. Agar-well diffusion method was used to detect antibacterial activity and was followed by the microbroth diffusion method [minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)]. RESULTS: The results of the phytochemical screening indicated that only alkaloids, flavonoids, phenols, saponins, cardiac glycosides and terpenoids were present, while steroids and tannins were absent. The MIC of the extracts ranged between 2 and 16 mg/mL, and the lowest MIC was obtained with Staphylococcus aureus. Also, the result of the MBC study indicated that the fungal extract was most active at concentrations of 2 and 4 mg/mL against Bacillus subtilis and S. aureus, respectively. CONCLUSIONS: This bioassay showed, for the first time, antibacterial activity of L. incrustata against some bacterial species. Subsequently, ERM fungi should be given attention when searching for antimicrobial agents because they could provide a solution to solve problems associated with conventional disease treatments (i.e. pathogenic microorganisms resistance).


Assuntos
Antibacterianos/farmacologia , Ericaceae/microbiologia , Fungos Mitospóricos/metabolismo , Bactérias/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Fúngicos , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/classificação , Fungos Mitospóricos/genética , Fungos Mitospóricos/isolamento & purificação , Micorrizas/metabolismo , Filogenia , RNA Ribossômico 18S/genética , Staphylococcus aureus/efeitos dos fármacos
2.
AMB Express ; 8(1): 154, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30269298

RESUMO

This study aimed to purify and characterize amyloglucosidase (AMG) from Leohumicola incrustata. AMG was purified to homogeneity from cell-free culture filtrate of an ERM fungus grown in a modified Melin-Norkrans liquid medium. The molecular mass of the AMG was estimated to be 101 kDa by combining the results of Sephadex G-100 gel filtration, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and zymography. The Km and kcat values were 0.38 mg mL-1 and 70 s-1, respectively, using soluble starch as a substrate. The enzyme was stable at 45 °C (pH 5.0), retaining over 65% activity after a pre-incubation period of 24 h. The metal inhibition profile of the AMG showed that Mn2+ and Ca2+ enhanced activity, while it was stable to metals ions, except a few (Al3+, Co2+, Hg2+ and Cd2+) that were inhibitory at a concentration higher than 5 mM. Thin layer chromatography revealed that only glucose was produced as the product of starch hydrolysis. The amylase from L. incrustata is a glucoamylase with promising characteristics such as temperature stability over an extended period, high substrate affinity and stability to a range of chemicals. Also, this study reports for the first time the possibility of using some culturable ERM fungi to produce enzymes for the bio-economy.

3.
AMB Express ; 7(1): 15, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050856

RESUMO

Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA