Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Sci (China) ; 122: 150-161, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717081

RESUMO

Mercury is ranked 3rd as a global pollutant because of its long persistence in the environment. Approximately 65% of its anthropogenic emission (Hg0) to the atmosphere is from coal-thermal power plants. Thus, the Hg0 emission control from coal-thermal power plants is inevitable. Therefore, multiple sorbent materials were synthesized using a one-step pyrolysis method to capture the Hg0 from simulated coal syngas. Results showed, the Hg0 removal performance of the sorbents increased by the citric acid/ultrasonic application. T5CUF0.3 demonstrated the highest Hg0 capturing performance with an adsorption capacity of 106.81 µg/g within 60 min at 200 °C under complex simulated syngas mixture (20% CO, 20% H2, 10 ppmV HCl, 6% H2O, and 400 ppmV H2S). The Hg0 removal mechanism was proposed, revealing that the chemisorption governs the Hg0 removal process. Besides, the active Hg0 removal performance is attributed to the high dispersion of valence Fe3O4 and lattice oxygen (α) contents over the T5CUF0.3 surface. In addition, the temperature programmed desorption (TPD) and XPS analysis confirmed that H2S/HCl gases generate active sites over the sorbent surface, facilitating high Hg0 adsorption from syngas. This work represented a facile and practical pathway for utilizing cheap and eco-friendly tea waste to control the Hg0 emission.


Assuntos
Poluentes Atmosféricos , Mercúrio , Adsorção , Poluentes Atmosféricos/química , Carvão Vegetal , Carvão Mineral , Fenômenos Magnéticos , Mercúrio/análise , Centrais Elétricas , Chá
2.
ACS Omega ; 6(37): 23913-23923, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568670

RESUMO

Elemental mercury (Hg0) removal from a hot gas is still challenging since high temperature influences the Hg0 removal and regenerable performance of the sorbent. In this work, a facile yet innovative sonochemical method was developed to synthesize a thermally stable magnetic tea biochar to capture the Hg0 from syngas. A sonochemically synthesized magnetic sorbent (TUF0.46) exhibited a more prodigious surface area with developed pore structures, ultra-paramagnetic properties, and high dispersion of Fe3O4/γ-Fe2O3 particles than a simply synthesized magnetic sorbent (TF0.46). The results showed that TUF0.46 demonstrated strong thermostability and attained a high Hg0 removal performance (∼98.6%) at 200 °C. After the 10th adsorption/regeneration cycle, the Hg0 removal efficiency of TUF0.46 was 19% higher than that of TF0.46. Besides, at 23.1% Hg0 breakthrough, TUF0.46 achieved an average Hg0 adsorption capacity of 16.58 mg/g within 24 h under complex syngas (20% CO, 20% H2, 5% H2O, and 400 ppm H2S). In addition, XPS results revealed that surface-active components (Fe+, O2-, O*, C=O) were the key factor for high Hg0 removal performance over TUF0.46 from syngas. Hence, sonochemistry is a promising practical tool for improving the surface morphology, thermal resistance, renewability, and Hg0 removal efficiency of a sorbent.

3.
ACS Omega ; 6(24): 15532-15542, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179596

RESUMO

This Mini-Review provides the fundamentals and the state-of-the-art overview on geopolymers, novel inorganic polymeric materials (also known as alkali-bounded ceramics), synthesized from aluminosilicate sources and explores their current and potential sustainable environmental applications. It summarizes and examines concisely the recent scientific advances on geopolymers widely synthesized from abundantly available fly-ash-based aluminosilicate materials via alkaline activation at relatively low temperatures. Although geopolymerization is not a new concept and has offered valuable solutions to some environmental challenges as a low-cost and environmentally benign alternative to conventional energy-intensive Portland cement-based construction materials and has also been used as a barrier in immobilizing toxic and radioactive metals, the application of this technology to produce effective adsorptive materials for mitigation of liquid- and gas-phase contaminants is relatively recent. The valorization of the fly-ash waste in the sustainable and cost-effective development of geopolymeric adsorbents and catalysts for the treatment and control of environmental contaminants and energy production and storage could lead to many economic benefits due to the low cost and resource recycling of this globally abundant raw material. Perspectives on the synthesis and utilization of new geopolymer-based adsorbents for environmental and energy applications with insights into future research directions, prospects, and challenges for economic large-scale production are addressed.

4.
Environ Sci Pollut Res Int ; 27(2): 1186-1201, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29948722

RESUMO

This study evaluates the chemistry, kinetics, and mass transfer aspects of the removal of NO and SO2 simultaneously from flue gas induced by the combined heat and Fe2+ activation of aqueous persulfate. The work involves experimental studies and the development of a mathematical model utilizing a comprehensive reaction scheme for detailed process evaluation, and to validate the results of an experimental study at 30-70 °C, which demonstrated that both SO2 and Fe2+ improved NO removal, while the SO2 is almost completely removed. The model was used to correlate experimental data, predict reaction species and nitrogen-sulfur (N-S) product concentrations, to obtain new kinetic data, and to estimate mass transfer coefficient (KLa) for NO and SO2 at different temperatures. The model percent conversion results appear to fit the data remarkably well for both NO and SO2 in the temperature range of 30-70 °C. The conversions ranged from 43.2 to 76.5% and 98.9 to 98.1% for NO and SO2, respectively, in the 30-70 °C range. The model predictions at the higher temperature of 90 °C were 90.0 and 97.4% for NO and SO2, respectively. The model also predicted decrease in KLa for SO2 of 1.097 × 10-4 to 8.88 × 10-5 s-1 (30-90 °C) and decrease in KLa for NO of 4.79 × 10-2 to 3.67 × 10-2 s-1 (30-50 °C) but increase of 4.36 × 10-2 to 4.90 × 10-2 s-1 at higher temperatures (70-90 °C). This emerging sulfate-radical-based process could be applied to the treatment of flue gases from combustion sources. Graphical abstract.


Assuntos
Temperatura Alta , Dióxido de Enxofre , Cinética , Dióxido de Enxofre/química , Água
5.
Chemosphere ; 193: 1216-1225, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29874751

RESUMO

The use of advanced oxidation processes (AOPs) to integrate flue gas treatments for SO2, NOx and Hg0 into a single process unit is rapidly gaining research attention. AOPs are processes that rely on the generation of mainly the hydroxyl radical. This work evaluates the effectiveness of the simultaneous removal of NO and SO2 from flue gas utilizing AOP induced by the combined heat and Fe2+ activation of aqueous persulfate, and elucidates the reaction pathways. The results indicated that both SO2 in the flue gas and Fe2+ in solution improved NO removal, while the SO2 is almost completely removed. Increased temperature led to increase in NO removal in the absence and presence of both Fe2+ and SO2, and in the absence of either SO2 or Fe2+, but the enhanced NO removal due to the presence of SO2 alone dominated at all temperatures. The removal of NO increased from 77.5% at 30 °C to 80.5% and 82.3% at 50 °C and 70 °C in the presence of SO2 alone, and from 35.3% to 62.7% and 81.2%, respectively, in the presence of Fe2+ alone. However, in the presence of both SO2 and Fe2+, NO conversion is 46.2% at 30 °C, increased only slightly to 48.2% at 50 °C; but sharply increased to 78.7% at 70 °C compared to 63.9% for persulfate-only activation. Results suggest NO removal in the presence of SO2 is equally effective by heat-only or heat-Fe2+ activation as the temperature increases. The results should be useful for future developments of advanced oxidation processes for flue gas treatments.


Assuntos
Ferro/química , Óxido Nítrico/química , Dióxido de Enxofre/química , Temperatura Alta , Oxirredução , Água
6.
J Chromatogr A ; 1218(3): 392-7, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21185030

RESUMO

A new method for the determination of peroxydisulfate using ion chromatography has been developed. Elution of peroxydisulfate was effected by isocratic elution using 200 mM NaOH at 40°C. A modification of the method using gradient elution was able to simultaneously determine other common inorganic ions (nitrate, nitrite, sulfate and chloride) down to significantly low concentrations in a peroxydisulfate matrix. The relative standard deviations (RSD) were in the range of 0.5-5%, for peak areas and <0.2% for peak retention times. The recoveries were between 95% and 120% for a concentration range of about 0.5-42 ppm. The limit of detection for peroxydisulfate ion was 0.2 ppm and for the other ions were ≤2×10(-2) ppm. The calibration curves were linear with slope and intercepts close to 1 and 0, respectively.


Assuntos
Ânions/análise , Cromatografia por Troca Iônica/métodos , Peróxidos/química , Sulfatos/química , Ânions/química , Modelos Lineares , Peróxidos/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Hidróxido de Sódio , Sulfatos/análise , Temperatura
7.
Ultrason Sonochem ; 17(6): 990-1003, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19879793

RESUMO

Two things are needed for any technology to be suitable for use in the industry, viz. 1. Technical feasibility and 2. Economical feasibility. The use of ultrasound for waste water treatment has been shown to be technically feasible by numerous reports in the literature over the years. But there are hardly any exhaustive reports which address the issue of economical feasibility of the use of ultrasound for waste water treatment on industrial scale. Hence an attempt was made to estimate the cost for the waste water treatment using ultrasound. The costs have been calculated for 1000 L/min capacity treatment plant. The costs were calculated based upon the rate constants for pollutant degradation. The pollutants considered were phenol, trichloroethylene (TCE) and reactive azo dyes. Time required for ninety percent degradation of pollutant was taken as the residence time. The amount of energy required to achieve the target degradation was calculated from the energy density (watt/ml) used in the treatability study. The cost of treatment was calculated by considering capital cost and operating cost involved for the waste water treatment. Quotations were invited from vendors to ascertain the capital cost of equipments involved and operating costs were calculated based on annual energy usage. The cost was expressed in dollars per 1000 gallons of waste water treated. These treatment costs were compared with other established Advanced Oxidation Process (AOP) technologies. The cost of waste water treatment for phenol was in the range of $89 per 1000 gallons for UV/US/O(3) to $15,536 per 1000 gallons for US alone. These costs for TCE were in the range of $25 per 1000 gallons to $91 for US+UV treatment and US alone, respectively. The cost of waste water treatment for reactive azo dyes was in the range of $65 per 1000 gallon for US+UV+H(2)O(2) to $14,203 per 1000 gallon for US alone. This study should help in quantifying the economics of waste water treatment using ultrasound on industrial scale. We strongly believe that this study will immensely help the researchers working in the area of applications of ultrasound for waste water treatment in terms of where the technology stands today as compared to other available commercial AOP technologies. This will also help them think for different ways to improve the efficiency of using ultrasound or search for other ways of generating cavitation which may be more efficient and help reduce the cost of treatment in future.

8.
J Phys Chem A ; 110(38): 11098-107, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16986843

RESUMO

The effects of sulfur dioxide (SO(2)), sodium chloride (NaCl), and peroxymonosulfate or oxone (2KHSO(5).KHSO(4).K(2)SO(4) with active ingredient, HSO(5)(-)) on the sonochemical removal of nitric oxide (NO) have been studied in a bubble column reactor. The initial concentration of NO studied ranged from about 500 to 1040 ppm. NaCl in the concentration range of 0.01-0.5 M was used as the electrolyte to study the effect of ionic strength. At the low NaCl concentration (0.01 M), the percent fractional removal of NO with initial concentration of 1040 ppm was enhanced significantly, while as the NaCl concentration increased, the positive effects were less pronounced. The presence of approximately 2520 ppm SO(2) in combination with 0.01 M NaCl further enhanced NO removal. However, with a NO initial concentration of 490 ppm, the addition of NaCl was detrimental to NO removal at all NaCl concentration levels. The combinative effect of sonication and chemical oxidation using 0.005-0.05 M oxone was also studied. While the lower concentrations of HSO(5)(-) enhanced NO removal efficiency, higher concentrations were detrimental depending on the initial concentration of NO. It was also demonstrated that in the presence of ultrasound, the smallest concentration of oxone was needed to obtain optimal fractional conversion of NO.

9.
Environ Sci Technol ; 39(22): 8557-70, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16323748

RESUMO

Recent advances in advanced oxidation technologies for applications in environmental remediation involve the use of acoustic cavitation. Cavitation is the formation, growth, and implosive collapse of gas- or vapor-filled microbubbles formed from acoustical wave-induced compression/ rarefaction in a body of liquid. Cavitation is effective in treating most liquid-phase pollutants but it is highly energy intensive and not economical or practically feasible when used alone. One of the most interesting topics in the recent advances in environmental sonochemistry is the intensification of the ultrasonic degradation process by coupling ultrasound with other types of energy, chemical oxidants, or photocataysts. In Part II of this series, a critical review of the applications of ultrasound in environmental remediation focusing on the simultaneous or hybrid use of ultrasonic irradiation and photocatalysis in aqueous solutions, namely, sonophotocatalytic oxidation processes, is presented.


Assuntos
Fotólise , Ultrassom , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Substâncias para a Guerra Química/metabolismo , Oxirredução
10.
Environ Sci Technol ; 39(10): 3409-20, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15952344

RESUMO

Sonoprocessing is the utilization of sonic and ultrasonic waves in chemical synthesis and processes. It is a new and rapidly growing research field with broad applications in environmental engineering, green chemical synthesis, and processing. The application of this environmentally benign technique in environmental remediation is currently under active research and development. Sonochemical oxidation is effective in treating toxic effluents and reducing toxicity. However, the ultrasonic treatment is highly energy intensive since sonication is relatively inefficient with respect to total input energy and is therefore not economically attractive or feasible alone. Hence, sonochemistry has not yet received much attention as an alternative for industrial and large-scale chemical and environmental processes. One of the most interesting topics in the recent advances in sonochemistry is the possibility of double or more excitations with ultrasound and other types of energy. The coupling of ultrasound with other free energy sources (i.e., UV) or chemical oxidation utilizing H2O2, O3, or ferrous ion presents interesting and attractive approaches. Therefore, many recent efforts have been devoted to improving the efficiency of sonochemical reactions by exploiting the advantages of combinative or hybrid processes involving the simultaneous or sequential use of ultrasonic irradiation and other advanced oxidation processes, electrochemical processes, and biological treatment. This paper provides a critical review of the applications of ultrasound in environmental remediation, focusing on recent developments and unifying analysis of combinative or hybrid systems, namely, sonophotochemical oxidation processes.


Assuntos
Ultrassom , Eliminação de Resíduos Líquidos/métodos , Temperatura Alta , Peróxido de Hidrogênio/química , Oxirredução , Ozônio/química , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água
11.
J Hazard Mater ; 90(3): 237-49, 2002 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11893423

RESUMO

Carbon disulfide (CS(2)) is toxic to animals and aquatic organisms, and can also decompose to carbonyl sulfide (OCS) and hydrogen sulfide (H(2)S) in aqueous environment. The kinetics of the sonochemical degradation of aqueous CS(2) was studied in a batch reactor at 20kHz and 20 degrees C, and the effects of process parameters (e.g. concentration, ultrasonic intensity, irradiating gas) investigated. The concentrations of unbuffered CS(2) solutions used were (6.4-7.0) x 10(-4), 10.5 x 10(-4) and (13.2-13.6) x 10(-4)M and the intensities were varied from 14 to 50W. The reaction rate was found to be zero-order and the rate constant for the degradation at 20 degrees C and 14W in air was 21.1 microM/min using the largest initial concentration range studied. At the same initial concentration range but at 50W (39.47W/m(2)) the degradation rate of CS(2) was 46.7 microM/min, more than two times that at 14W (11.04W/m(2)). The rate of CS(2) sonochemical degradation in the presence of the different gases was in the order of He>air> or =N(2)O>Ar; the rate with helium was found to be about three times that of argon. The formation of sulfate (SO(4)(2-)) as reaction product with air as the irradiating gas was enhanced in the presence of hydrogen peroxide (H(2)O(2)) and inhibited in the presence of 1-butanol. The sonochemical oxidation of CS(2) may prove to be an efficient and environmentally benign way for the removal of this hazardous pollutant from natural water and wastewater.


Assuntos
Dissulfeto de Carbono/química , Poluentes Atmosféricos/química , Cinética , Soluções , Ultrassom , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA