Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761938

RESUMO

The contribution of human genes to the variability of disease outcomes has been shown to be important across infectious diseases. Studies have shown mutations within specific human genes are associated with variable COVID-19 outcomes. We focused on the SARS-CoV-2 receptors/co-receptors to identify the role of specific polymorphisms within ACE2, TMPRSS2, NRP1 and CD147. Polymorphisms within ACE2 (rs2285666), TMPRSS2 (rs12329760), CD147 (rs8259) and NRP1 (rs10080) have been shown to associate with COVID-19 severity. Using cryopreserved samples from COVID-19-positive African, European and South Asian individuals within South Africa, we determined genotype frequencies. The genetic variant rs2285666 was associated with COVID-19 severity with an ethnic bias. African individuals with a CC genotype demonstrate more severe COVID-19 outcomes (OR = 7.5; 95% CI 1.164-80.89; p = 0.024) compared with those with a TT genotype. The expressions of ACE2 and SARS-CoV-2 viral load were measured using droplet digital PCR. Our results demonstrate rs2285666 and rs10080 were significantly associated with increased SARS-CoV-2 viral load and worse outcomes in certain ethnicities. This study demonstrates two important findings. Firstly, SARS-CoV-2 viral load is significantly lower in Africans compared with individuals of European and South Asian descent (p = 0.0002 and p < 0.0001). Secondly, SARS-CoV-2 viral load associates with specific SARS-CoV-2 receptor variants. A limited number of studies have examined the receptor/co-receptor genes within Africa. This study investigated genetic variants within the SARS-CoV-2 receptor/co-receptor genes and their association with COVID-19 severity and SARS-CoV-2 viral load across different ethnicities. We provide a genetic basis for differences in COVID-19 severity across ethnic groups in South Africa, further highlighting the importance of further investigation to determine potential therapeutic targets and to guide vaccination strategies that may prioritize specific genotypes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Etnicidade/genética , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , África do Sul/epidemiologia
2.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240057

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15). These SNPs may be determining factors for the decreased disease severity observed within African individuals. Furthermore, we highlight the absence of genetic studies within the African population and emphasize the importance of further research. This review provides a comprehensive summary of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Enzima de Conversão de Angiotensina 2/genética , Suscetibilidade a Doenças , Etnicidade
3.
Front Genet ; 13: 862642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601502

RESUMO

Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.

4.
Front Immunol ; 12: 795121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925380

RESUMO

With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.


Assuntos
Terapia Genética/tendências , Infecções por HIV/genética , HIV-1/fisiologia , Animais , Biomarcadores , Metilação de DNA , Epigênese Genética , Humanos
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884764

RESUMO

Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Acetilação/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Epigênese Genética/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Código das Histonas/genética , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular , Nanopartículas , Neoplasias/genética , Neoplasias/metabolismo , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA