Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(11): 3538-3551, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34424563

RESUMO

Early-emerging weeds are known to negatively affect crop growth but the mechanisms by which weeds reduce crop yield are not fully understood. In a 4-year study, we evaluated the effect of duration of weed-reflected light on sugar beet (Beta vulgaris L.) growth and development. The study included an early-season weed removal series and a late-season weed addition series of treatments arranged in a randomized complete block, and the study design minimized direct resource competition. If weeds were present from emergence until the two true-leaf sugar beet stage, sugar beet leaf area was reduced 22%, leaf biomass reduced 25%, and root biomass reduced 32% compared to sugar beet grown season-long without surrounding weeds. Leaf area, leaf biomass, and root biomass was similar whether weeds were removed at the two true-leaf stage (approximately 330 GDD after planting) or allowed to remain until sugar beet harvest (approximately 1,240 GDD after planting). Adding weeds at the two true-leaf stage and leaving them until harvest (~1,240 GDD) reduced sugar beet leaf and root biomass by 18% and 23%, respectively. This work suggests sugar beet responds early and near-irreversibly to weed presence and has implications for crop management genetic improvement.


Assuntos
Adaptação Fisiológica , Beta vulgaris/crescimento & desenvolvimento , Luz , Folhas de Planta/crescimento & desenvolvimento , Beta vulgaris/efeitos da radiação , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA