Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 11(22): 16070-16081, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824812

RESUMO

Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.

2.
Front Microbiol ; 10: 1274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231351

RESUMO

The soil food web is often described as having three main energy channels: root, bacterial and fungal. Here we provide quantitative data using a sensitive stable isotope ratio mass spectrometry procedure with microcosms on species interactions in the fungal pathway. We measured 15N and 13C enrichment in microarthropods through grazing rare isotope enriched fungal mycelia. Experimental treatments were various combinations of 1, 2, 3, 4 microarthropods species. We used three fungivores (the collembolan Lepidocyrtus curvicollis, the Astigmata Tyrophagus putrescentiae, the Oribatida Oribatula tibialis), and the Mesostigmata predator Hypoaspis acquilifer. We collected individuals of each species separately, as well as their feces, and molt where available. All three fungivorous microarthropods consumed significantly more than their own body weight per day. The three fungivores differed in their consumption of the mycelium as it was not equally palatable to each. The Mesostigmata predator Hypoaspis also differed in its microarthropod prey preference. In multiple species combinations microarthropod behavioral interactions modified consumption and predation rates. Our selection of mites of different sizes, with varied preference for the mycelium, combined with differing predation rates on each mite, demonstrate that even three trophic level interactions with only five interacting species are not predictably simple. The interpretation of the stable isotope results and consumed-excreted weights indicate that: (a) behavior and microscopic observations should not be ignored in competition-predation interactions, and (b) functional guilds can take advantage of more diverse food opportunities. The reality of mixed diets complicates functional guild assignments that are reflected in 15N and 13C isotope levels at natural abundances in the environment. Microcosm experiments with this sensitive technique can help decipher the interpretation of rare isotope natural abundance values, as well as providing measured consumption, growth, and excretion rate values for modeling soil food web interactions.

3.
J Eukaryot Microbiol ; 66(1): 4-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257078

RESUMO

This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , Terminologia como Assunto
4.
Ecol Evol ; 4(1): 1-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24455156

RESUMO

Understanding trophic linkages within the soil food web (SFW) is hampered by its opacity, diversity, and limited niche adaptation. We need to expand our insight between the feeding guilds of fauna and not just count biodiversity. The soil fauna drive nutrient cycling and play a pivotal, but little understood role within both the carbon (C) and nitrogen (N) cycles that may be ecosystem dependent. Here, we define the structure of the SFW in two habitats (grassland and woodland) on the same soil type and test the hypothesis that land management would alter the SFW in these habitats. To do this, we census the community structure and use stable isotope analysis to establish the pathway of C and N through each trophic level within the ecosystems. Stable isotope ratios of C and N from all invertebrates were used as a proxy for trophic niche, and community-wide metrics were obtained. Our empirically derived C/N ratios differed from those previously reported, diverging from model predictions of global C and N cycling, which was unexpected. An assessment of the relative response of the different functional groups to the change from agricultural grassland to woodland was performed. This showed that abundance of herbivores, microbivores, and micropredators were stimulated, while omnivores and macropredators were inhibited in the grassland. Differences between stable isotope ratios and community-wide metrics, highlighted habitats with similar taxa had different SFWs, using different basal resources, either driven by root or litter derived resources. Overall, we conclude that plant type can act as a top-down driver of community functioning and that differing land management can impact on the whole SFW.

5.
J Eukaryot Microbiol ; 59(5): 429-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020233

RESUMO

This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.


Assuntos
Eucariotos/classificação , Eucariotos/citologia , Eucariotos/fisiologia , Genoma , Filogenia , Terminologia como Assunto
6.
J Eukaryot Microbiol ; 59(6): 520-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22299758

RESUMO

The soil is probably the most diverse habitat there is, with organisms ranging in sizes from less than 1 µm to several metres in length. However, it is increasingly evident that we know little about the interactions occurring between these organisms, the functions that they perform as individual species, or together within their different feeding guilds. These interactions between groups of organisms and physical and chemical processes shape the soil as a habitat and influence the nature of the soil food web with consequences for the above-ground vegetation and food web. Protists are known as one of the most abundant groups of bacterivores within the soil; however, they are also consumers of a number of other food sources. Even though they are responsible for a large proportion of the mineralisation of bacterial biomass and have a large impact on the C and N cycles within the soil they are regularly overlooked when investigating the complete soil food web. Recently, stable isotopes have been used to determine trophic interactions and here we describe how this technique has been used to highlight linkages between protists and the soil food web.


Assuntos
Cadeia Alimentar , Isótopos/metabolismo , Solo/análise , Solo/parasitologia , Marcação por Isótopo/métodos
7.
Microb Ecol ; 63(4): 905-18, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21990016

RESUMO

Protozoa are one of the most abundant groups of bacterivores within the soil and are responsible for mineralisation of bacterial biomass, having a large impact on C and N cycling. Little is known of their contribution to soil nutrient transfers or the identity of their consumers. Here, for the first time indigenous flagellates and ciliates, enriched to 83 atom% for (13)C and 10 atom% for (15)N, were introduced to soil cores from two different land managements, grassland and woodland with the same soil type, to trace the flow of protozoan C and N through the soil food web. Nematodes, Collembola, earthworms and insect larvae obtained the greatest amounts of C and N of protozoan origin, either through direct consumption or uptake of biomass post-cell death. Our results show that changes in management, affect the functioning of the soil food web and the utilisation of protozoa as a food source.


Assuntos
Cilióforos/fisiologia , Eucariotos/fisiologia , Cadeia Alimentar , Insetos/fisiologia , Nematoides/fisiologia , Solo/parasitologia , Animais , Artrópodes/fisiologia , Ecossistema , Oligoquetos/fisiologia
8.
Eur J Protistol ; 47(2): 59-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21276719

RESUMO

The mid-Cretaceous amber of France contains thousands of protist-like inclusions similar in shape to some ciliates, flagellates and amoebae. The sheer abundance of these inclusions and their size variation within a single amber piece are not concordant with true fossil protists. French amber is coniferous in origin, which generally does not preserve well protists without cell walls. Thus, it would be surprising if French Cretaceous amber had preserved millions of protists. Here, we present a survey of the protist-like inclusions from French amber and attempt to elucidate their origins. Diverse Cretaceous ambers (from Spain, Germany and Lebanon), also derived from conifer resins, contain thousands of protist-like inclusions. In contrast, Tertiary ambers and modern resins are poor in protist-like fossils. This suggests these inclusions originated from early Cretaceous plant resins, probably secreted with the resin by trees that did not survive after the Cretaceous (such as the Cheirolepidiaceae). A review of the recent literature on amber microfossils indicates several protist-like inclusions that are unlikely to have a biological origin have already been described as real fossil protists. This is problematic in that it will bias our understanding of protist evolution.


Assuntos
Alveolados/isolamento & purificação , Âmbar , Biodiversidade , Fósseis , França , Alemanha , Líbano , Espanha
9.
Microbes Environ ; 23(1): 13-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-21558681

RESUMO

Land to be remediated, such as those affected by heavy metals or organic pollutants, can be remediated using biological approaches. These include, quarries and strip mines, or land impacted by oil pollution or other organic pollutants. Phytoremediation is usually a key component of bioremediation. However, without restoring soil organic matter, the soil biodiversity takes decades to recover. The soil organisms are a key component of soil function, and support plant growth. In addition, the soil microbiology is essential both for bioremediation and supporting phytoremediation. Using inexpensive sources of quality organic matter, it should be possible to accelerate recovery of ecosystem health and biodiversity. One potential source of untapped organic matter is municipal solid waste as a composted amendment. The organic matter amendment promotes soil structure and the creation of adequate habitat and substrate for the soil decomposition food web. Long-term chronosequence studies indicate that soil food webs tend to make a transition after about 20 years to a stable community structure. This approach could be used to gain carbon credits by restoring degraded or polluted soils.

11.
J Eukaryot Microbiol ; 53(6): 507-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17123415

RESUMO

Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.


Assuntos
Clima Desértico , Eucariotos/fisiologia , Microbiologia do Solo , Animais , Precipitação Química , Eucariotos/efeitos da radiação , Temperatura
12.
J Eukaryot Microbiol ; 52(5): 399-451, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16248873

RESUMO

This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.


Assuntos
Grupos de População Animal/classificação , Eucariotos/classificação , Células Eucarióticas/classificação , Grupos de População Animal/genética , Animais , Eucariotos/genética , Fungos/classificação , Plâncton/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA