Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(2): 796-805, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625284

RESUMO

Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , Reparo do DNA , Animais , Humanos , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Magnésio , Mamíferos/metabolismo
2.
J Biol Chem ; 295(21): 7317-7326, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284330

RESUMO

AlkB is a bacterial Fe(II)- and 2-oxoglutarate-dependent dioxygenase that repairs a wide range of alkylated nucleobases in DNA and RNA as part of the adaptive response to exogenous nucleic acid-alkylating agents. Although there has been longstanding interest in the structure and specificity of Escherichia coli AlkB and its homologs, difficulties in assaying their repair activities have limited our understanding of their substrate specificities and kinetic mechanisms. Here, we used quantitative kinetic approaches to determine the transient kinetics of recognition and repair of alkylated DNA by AlkB. These experiments revealed that AlkB is a much faster alkylation repair enzyme than previously reported and that it is significantly faster than DNA repair glycosylases that recognize and excise some of the same base lesions. We observed that whereas 1,N6-ethenoadenine can be repaired by AlkB with similar efficiencies in both single- and double-stranded DNA, 1-methyladenine is preferentially repaired in single-stranded DNA. Our results lay the groundwork for future studies of AlkB and its human homologs ALKBH2 and ALKBH3.


Assuntos
Enzimas AlkB/química , Reparo do DNA , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Enzimas AlkB/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , DNA/química , DNA/genética , DNA Bacteriano/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos
3.
J Biol Chem ; 294(37): 13629-13637, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31320474

RESUMO

The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.


Assuntos
Proteínas de Transporte/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquilantes , Alquilação/genética , Proteínas de Transporte/genética , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/genética , DNA Fúngico/metabolismo , Remoção de Radical Alquila/genética , Endodesoxirribonucleases/genética , Escherichia coli/metabolismo , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Mutação , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Especificidade por Substrato
4.
Chem Res Toxicol ; 30(6): 1317-1326, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28485930

RESUMO

Nicking of the DNA strand immediately upstream of an internal abasic (AP) site produces 5'-terminal abasic (dRp) DNA. Both the intact and the nicked abasic species are reactive intermediates along the DNA base excision repair (BER) pathway and can be derailed by side reactions. Aberrant accumulation of the 5'-terminal abasic intermediate has been proposed to lead to cell death, so we explored its reactivity and compared it to the reactivity of the better-characterized internal abasic intermediate. We find that the 5'-terminal abasic group cross-links with the exocyclic amine of a nucleotide on the opposing strand to form an interstrand DNA-DNA cross-link (ICL). This cross-linking reaction has the same kinetic constants and follows the same pH dependence as the corresponding cross-linking reaction of intact abasic DNA, despite the changes in charge and flexibility engendered by the nick. However, the ICL that traps nicked abasic DNA has a shorter lifetime at physiological pH than the otherwise analogous ICL of intact abasic DNA due to the reversibility of the cross-linking reaction coupled with faster breakdown of the 5'-terminal abasic species via ß-elimination. Unlike internal abasic DNA, 5'-terminal abasic DNA can also react with exocyclic amines of unpaired nucleotides at the 3'-end of the nick, thereby bridging the nick by connecting DNA strands of the same orientation. The discovery and characterization of cross-links between 5'-terminal abasic sites and exocyclic amines of both opposing and adjacent nucleotides add to our knowledge of DNA damage with the potential to disrupt DNA transactions.


Assuntos
Aminas/química , Reagentes de Ligações Cruzadas/química , DNA/química , Estrutura Molecular
5.
Biochemistry ; 54(9): 1849-57, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25679877

RESUMO

Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , DNA/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Dados de Sequência Molecular , Uracila/metabolismo
6.
Biochemistry ; 52(23): 4066-74, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23688261

RESUMO

After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (εA) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of εA from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases.


Assuntos
Ácido Apurínico/química , Adutos de DNA/química , DNA Glicosilases/química , 1-Propanol/química , Reparo do DNA , Etanol/química , Etilenoglicol/química , Glicerol/química , Glicosídeos/química , Humanos , Hidrólise , Cinética , Metanol/química , Propilenoglicóis/química
7.
Biochemistry ; 49(42): 9024-6, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20873830

RESUMO

The removal of damaged bases by DNA glycosylases is thought to be effectively irreversible, because of an overall equilibrium that favors hydrolysis over synthesis of the N-glycosyl bond. Surprisingly, human alkyladenine DNA glycosylase (AAG) can make damaged DNA by catalyzing formation of an N-glycosyl bond between 1,N(6)-ethenoadenine (εA) and abasic DNA. We attribute the ready reversibility of this glycosylase reaction to the exceptionally tight binding and slow subsequent hydrolysis of DNA containing an εA lesion. In principle, reversibility could provide a mechanism for direct reversal of base damage by a DNA glycosylase, allowing the glycosylase to bypass the rest of the base excision repair pathway.


Assuntos
DNA Glicosilases/metabolismo , DNA/química , DNA/metabolismo , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Sequência de Bases , DNA/genética , Dano ao DNA , Reparo do DNA , Humanos , Técnicas In Vitro , Cinética , Modelos Químicos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo
8.
J Biol Chem ; 284(8): 5021-9, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19103602

RESUMO

Two thioesterases are commonly found in natural product biosynthetic clusters, a type I thioesterase that is responsible for removing the final product from the biosynthetic complex and a type II thioesterase that is believed to perform housekeeping functions such as removing aberrant units from carrier domains. We present the crystal structure and the kinetic analysis of RifR, a type II thioesterase from the hybrid nonribosomal peptide synthetases/polyketide synthase rifamycin biosynthetic cluster of Amycolatopsis mediterranei. Steady-state kinetics show that RifR has a preference for the hydrolysis of acyl units from the phosphopantetheinyl arm of the acyl carrier domain over the hydrolysis of acyl units from the phosphopantetheinyl arm of acyl-CoAs as well as a modest preference for the decarboxylated substrate mimics acetyl-CoA and propionyl-CoA over malonyl-CoA and methylmalonyl-CoA. Multiple RifR conformations and structural similarities to other thioesterases suggest that movement of a helical lid controls access of substrates to the active site of RifR.


Assuntos
Actinomycetales/enzimologia , Acil Coenzima A/química , Proteínas de Bactérias/química , Ácido Graxo Sintases/química , Estrutura Terciária de Proteína/fisiologia , Tioléster Hidrolases/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Ácido Graxo Sintases/metabolismo , Cinética , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Estrutura Secundária de Proteína/fisiologia , Rifamicinas/biossíntese , Tioléster Hidrolases/metabolismo
9.
J Am Chem Soc ; 125(45): 13664-5, 2003 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-14599196

RESUMO

A nonribosomal peptide synthetase (NRPS) loading module and a polyketide synthase (PKS) elongation module catalyze the preliminary steps in the biosynthesis of the rifamycin antibiotics. A benzoate molecule is covalently attached to the phosphopantetheine arm of the thiolation domain of the loading module when its reaction partner methylmalonyl-CoA is absent. Occupancy of the thiolation domain of the elongation module by a methylmalonyl moiety appears to trigger intermodular transfer of benzoate to the ketosynthase domain of the elongation module. This transthiolation event is fast relative to the initial loading of benzoate onto the loading module. It will be of interest to determine if these results are generally true for intermodular acyl transfer in other NRPS-PKS and PKS assembly lines.


Assuntos
Complexos Multienzimáticos/metabolismo , Peptídeo Sintases/metabolismo , Rifamicinas/biossíntese , Benzoatos/metabolismo , Cinética , Especificidade por Substrato
10.
Biochemistry ; 41(16): 5313-24, 2002 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11955082

RESUMO

Rifamycin synthetase assembles the chemical backbone that members of the rifamycin family of antibiotics have in common. The synthetase contains a mixed biosynthetic interface between its loading module, which uses a nonribosomal peptide synthetase mechanism, and its initial elongation module, which uses a polyketide synthase mechanism. Biochemical studies of the loading and initial elongation modules of rifamycin synthetase reveal that this bimodular protein (LM-M1) catalyzes the formation of the phenyl ketide 3-hydroxy-2-methyl-3-phenylpropionate via a series of reactions that require benzoate, Mg.ATP, methylmalonyl-CoA, and NADPH. The overall rate of phenyl ketide production appears to be determined by the covalent loading of benzoate onto LM-M1, rather than by subsequent steps such as intermodular transfer of benzoate or condensation of benzoate and methylmalonate. Substituted benzoates that have previously been shown to be substrates for the loading module alone can also be incorporated into the corresponding aryl ketides by LM-M1, suggesting that the bimodular protein has a broad substrate tolerance. Discrimination between the substituted benzoates appears to reside in the benzoate loading reaction, and preincubation of LM-M1 with substituted benzoates and Mg.ATP allows faster downstream reactions to be unmasked. LM-M1 may be a useful biochemical system for exploring interactions between nonribosomal peptide synthetase and polyketide synthase modules.


Assuntos
Antibacterianos/biossíntese , Complexos Multienzimáticos/biossíntese , Elongação Traducional da Cadeia Peptídica , Peptídeo Sintases/biossíntese , Rifamicinas/biossíntese , Acilação , Aminobenzoatos/metabolismo , Hidroxibenzoatos , Cinética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/isolamento & purificação , Peptídeo Sintases/metabolismo , Fenilpropionatos/metabolismo , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA