Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 1196, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256613

RESUMO

The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure.


Assuntos
Prótons , Atividade Solar , Planeta Terra , Alemanha , Árvores
3.
Nat Commun ; 13(1): 214, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017519

RESUMO

During solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth's atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.

4.
Science ; 374(6570): eabi9756, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793203

RESUMO

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model.

5.
Science ; 374(6570): eabh3655, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793228

RESUMO

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.

6.
Nature ; 595(7865): 66-69, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194020

RESUMO

The Laacher See eruption (LSE) in Germany ranks among Europe's largest volcanic events of the Upper Pleistocene1,2. Although tephra deposits of the LSE represent an important isochron for the synchronization of proxy archives at the Late Glacial to Early Holocene transition3, uncertainty in the age of the eruption has prevailed4. Here we present dendrochronological and radiocarbon measurements of subfossil trees that were buried by pyroclastic deposits that firmly date the LSE to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. The revised age of the LSE necessarily shifts the chronology of European varved lakes5,6 relative to the Greenland ice core record, thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought. Our results synchronize the onset of the Younger Dryas across the North Atlantic-European sector, preclude a direct link between the LSE and Greenland Stadial-1 cooling7, and suggest a large-scale common mechanism of a weakened Atlantic Meridional Overturning Circulation under warming conditions8-10.

7.
Science ; 371(6531): 811-818, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602851

RESUMO

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.

8.
Chemosphere ; 263: 128318, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297251

RESUMO

Assessing the transport of natural radionuclides in the atmosphere provides a powerful tool to study air mass circulation. Here, we investigated the seasonal atmospheric distribution of the naturally produced 7Be in surface air over Europe between 40° N and 68° N during the period 1975-2018. The results suggest that the inter-annual variability of 7Be reflects production rates of the radionuclide induced by solar modulation of cosmic rays. Further analysis of the meteorological influences indicates that the meteorological influences on 7Be concentrations are geographically and seasonally dependent. We found that, in general, the tropopause pressure plays an important factor influencing 7Be activity for winter and spring seasons while the sea level pressure and temperature are more dominant during summer and autumn seasons. The combination of tropospheric production rates and meteorological parameters explains 24%-79% variances of the seasonal 7Be activity. We further applied a three-box model to study the influence of stratosphere-troposphere exchanges on 7Be concentrations. The simulation supports that the seasonal cycle of 7Be in Europe is controlled by two main factors: the changing height of the troposphere (seasonality of the tropopause height) and seasonal variations of the stratosphere-troposphere exchanges.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Poluentes Radioativos do Ar/análise , Europa (Continente) , Meteorologia , Estações do Ano
9.
Proc Natl Acad Sci U S A ; 116(13): 5961-5966, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858311

RESUMO

Recently, it has been confirmed that extreme solar proton events can lead to significantly increased atmospheric production rates of cosmogenic radionuclides. Evidence of such events is recorded in annually resolved natural archives, such as tree rings [carbon-14 (14C)] and ice cores [beryllium-10 (10Be), chlorine-36 (36Cl)]. Here, we show evidence for an extreme solar event around 2,610 years B.P. (∼660 BC) based on high-resolution 10Be data from two Greenland ice cores. Our conclusions are supported by modeled 14C production rates for the same period. Using existing 36Cl ice core data in conjunction with 10Be, we further show that this solar event was characterized by a very hard energy spectrum. These results indicate that the 2,610-years B.P. event was an order of magnitude stronger than any solar event recorded during the instrumental period and comparable with the solar proton event of AD 774/775, the largest solar event known to date. The results illustrate the importance of multiple ice core radionuclide measurements for the reliable identification of short-term production rate increases and the assessment of their origins.

10.
Nat Commun ; 8(1): 520, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900099

RESUMO

Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14C and 10Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.

11.
Nat Commun ; 6: 8611, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26497389

RESUMO

The origin of two large peaks in the atmospheric radiocarbon ((14)C) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric (14)C production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved (10)Be measurements from both Arctic and Antarctic ice cores. Using ice core (36)Cl data in pair with (10)Be, we further show that these solar events were characterized by a very hard energy spectrum with high fluxes of solar protons with energy above 100 MeV. These results imply that the larger of the two events (AD 774/5) was at least five times stronger than any instrumentally recorded solar event. Our findings highlight the importance of studying the possibility of severe solar energetic particle events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA