Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800655

RESUMO

Intratumoral androgen biosynthesis contributes to castration-resistant prostate cancer progression in patients treated with androgen deprivation therapy. The molecular mechanisms by which castration-resistant prostate cancer acquires the capacity for androgen biosynthesis to bypass androgen deprivation therapy are not entirely known. Here, we show that semaphorin 3C, a secreted signaling protein that is highly expressed in castration-resistant prostate cancer, can promote steroidogenesis by altering the expression profile of key steroidogenic enzymes. Semaphorin 3C not only upregulates enzymes required for androgen synthesis from dehydroepiandrosterone or de novo from cholesterol but also simultaneously downregulates enzymes involved in the androgen inactivation pathway. These changes in gene expression correlate with increased production of androgens induced by semaphorin 3C in prostate cancer model cells. Moreover, semaphorin 3C upregulates androgen synthesis in LNCaP cell-derived xenograft tumors, likely contributing to the enhanced in vivo tumor growth rate post castration. Furthermore, semaphorin 3C activates sterol regulatory element-binding protein, a transcription factor that upregulates enzymes involved in the synthesis of cholesterol, a sole precursor for de novo steroidogenesis. The ability of semaphorin 3C to promote intratumoral androgen synthesis may be a key mechanism contributing to the reactivation of the androgen receptor pathway in castration-resistant prostate cancer, conferring continued growth under androgen deprivation therapy. These findings identify semaphorin 3C as a potential therapeutic target for suppressing intratumoral steroidogenesis.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Semaforinas , Masculino , Humanos , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios , Receptores Androgênicos/metabolismo , Colesterol/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279093

RESUMO

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Assuntos
Puma , Sarcoma de Ewing , Animais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Sarcoma de Ewing/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/uso terapêutico
3.
Medicines (Basel) ; 10(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976310

RESUMO

Background: Abiraterone acetate is a cytochrome P450 17A1 (CYP17A1) inhibitor that is indicated for use in both castration-resistant and castration-sensitive prostate cancer patients. To manage the mineralocorticoid effects of CYP17A1 inhibition, a glucocorticoid such as dexamethasone is co-administered with abiraterone. The goal of the present study was to understand the effect of dexamethasone on the disposition of abiraterone. Methods: Adult male CD-1 mice were treated with either dexamethasone (80 mg/kg/day) or vehicle for three consecutive days, followed by the administration of a single dose of abiraterone acetate (180 mg/kg) as an oral gavage. Blood samples were collected by tail bleeding at timepoints between 0 to 24 h. Subsequently, abiraterone was extracted from the mouse serum using a neutral pH condition and serum abiraterone levels were determined using a liquid chromatography-mass spectrometry assay. Results: Our results demonstrated that dexamethasone lowered the maximum plasma concentration and area under the curve parameters by approximately five- and ten-fold, respectively. Similar effects were also observed on the plasma half-life and oral clearance parameters. This is the first report of dexamethasone effect on abiraterone disposition in vivo. Conclusions: We conclude that dexamethasone has the potential to reduce the plasma abiraterone level and thus compromise its CYP17A1 inhibitory ability in the procancerous androgen biosynthesis pathway. Thus, use of a higher abiraterone dose may be warranted when used alongside dexamethasone.

4.
Oncogene ; 42(10): 748-758, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611121

RESUMO

The androgen receptor (AR) plays an important role in PCa metabolism, with androgen receptor pathway inhibition (ARPI) subjecting PCa cells to acute metabolic stress caused by reduced biosynthesis and energy production. Defining acute stress response mechanisms that alleviate ARPI stress and therefore mediate prostate cancer (PCa) treatment resistance will help improve therapeutic outcomes of patients treated with ARPI. We identified the up-regulation of chaperone-mediated autophagy (CMA) in response to acute ARPI stress, which persisted in castration-resistant PCa (CRPC); previously undefined in PCa. CMA is a selective protein degradation pathway and a key stress response mechanism up-regulated under several stress stimuli, including metabolic stress. Through selective protein degradation, CMA orchestrates the cellular stress response by regulating cellular pathways through selective proteome remodeling. Through broad-spectrum proteomic analysis, CMA coordinates metabolic reprogramming of PCa cells to sustain PCa growth and survival during ARPI; through the upregulation of mTORC1 signaling and pathways associated with PCa biosynthesis and energetics. This not only promoted PCa growth during ARPI, but also promoted the emergence of CRPC in-vivo. During CMA inhibition, PCa metabolism is compromised, leading to ATP depletion, resulting in a profound anti-proliferative effect on PCa cells, and is enhanced when combined with ARPI. Furthermore, CMA inhibition prevented in-vivo tumour formation, and also re-sensitized enzalutamide-resistant cell lines in-vitro. The profound anti-proliferative effect of CMA inhibition was attributed to cell cycle arrest mediated through p53 transcriptional repression of E2F target genes. In summary, CMA is an acute ARPI stress response mechanism, essential in alleviating ARPI induced metabolic stress, essential for ensuring PCa growth and survival. CMA plays a critical role in the development of ARPI resistance in PCa.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/genética , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteoma , Proteômica , Autofagia , Linhagem Celular Tumoral
5.
Oncogene ; 42(9): 693-707, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596844

RESUMO

Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Nitrilas/uso terapêutico , Antagonistas de Receptores de Andrógenos , Membro C3 da Família 1 de alfa-Ceto Redutase
6.
J Cancer Res Clin Oncol ; 149(8): 4701-4717, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36222898

RESUMO

PURPOSE: Extracellular vesicles (EV) secreted from cancer cells are present in various biological fluids, carrying distinctly different cellular components compared to normal cells, and have great potential to be used as markers for disease initiation, progression, and response to treatment. This under-utilised tool provides insights into a better understanding of prostate cancer. METHODS: EV from serum and urine of healthy men and castration-resistant prostate cancer (CRPC) patients were isolated and characterised by transmission electron microscopy, particle size analysis, and western blot. Proteomic and cholesterol liquid chromatography-mass spectrometry (LC-MS) analyses were conducted. RESULTS: There was a successful enrichment of small EV/exosomes isolated from serum and urine. EV derived from biological fluids of CRPC patients had significant differences in composition when compared with those from healthy controls. Analysis of matched serum and urine samples from six prostate cancer patients revealed specific EV proteins common in both types of biological fluid for each patient. CONCLUSION: Some of the EV proteins identified from our analyses have potential to be used as CRPC markers. These markers may depict a pattern in cancer progression through non-invasive sample collection.


Assuntos
Líquidos Corporais , Exossomos , Vesículas Extracelulares , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Proteômica , Vesículas Extracelulares/metabolismo
7.
BJU Int ; 131(3): 367-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181708

RESUMO

OBJECTIVES: To investigate global changes in ureters at the transcriptional, translational and functional levels, both while stents are indwelling and after removal and recovery, and to study the effects of targeting pathways that play a potential role. METHODS: Pig ureters were stented for varying amounts of time (48 h, 72 h, 14 days) and the impact on peristalsis, dilatation and hydronephrosis were assessed. RNAseq, proteomic, histological and smooth muscle (SM) function analyses were performed on ureteric and kidney tissues to assess changes induced by stenting and recovery. Pathway analysis was performed using Ingenuity Pathway Analysis software. To study the impact of possible interventions, the effects of erythropoeitin (EPO) and a Gli1 inhibitor were assessed. RESULTS: Stenting triggers massive ureteric dilatation, aperistalsis and moderate hydronephrosis within 48 h. Pathways associated with obstruction, fibrosis and kidney injury were upregulated by stenting. Increased expression of GLI1, clusterin-α (a kidney injury marker) and collagen 4A2 (a fibrosis marker) was found in stented vs contralateral unstented ureters. EPO did not improve peristalsis or contraction force but did decrease non-purposeful spasming seen exclusively in stented ureters. Tamsulosin administration increased contractility but not rate of peristalsis in stented ureters. CONCLUSIONS: Ureters respond to stents similarly to how they respond to an obstruction, that is, with activation of pathways associated with hydronephrosis, fibrosis and kidney injury. This is driven by significant dilatation and associated ureteric SM dysfunction. EPO and tamsulosin induced mild favourable changes in SM physiology, suggesting that targeting specific pathways has potential to address stent-induced complications.


Assuntos
Hidronefrose , Ureter , Obstrução Ureteral , Animais , Suínos , Proteína GLI1 em Dedos de Zinco , Proteômica , Tansulosina , Ureter/patologia , Hidronefrose/etiologia , Stents/efeitos adversos
8.
Nat Commun ; 13(1): 4760, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963852

RESUMO

Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Androgênios , Sulfatos de Condroitina , Glicocálix/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
9.
Sci Rep ; 12(1): 3075, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197518

RESUMO

Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas/metabolismo , Neoplasias/metabolismo , Transporte Proteico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo
10.
Cancers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503301

RESUMO

Broad-spectrum therapeutics in non-small cell lung cancer (NSCLC) are in demand. Most human solid tumors express proteoglycans modified with distinct oncofetal chondroitin sulfate (CS) chains that can be detected and targeted with recombinant VAR2CSA (rVAR2) proteins and rVAR2-derived therapeutics. Here, we investigated expression and targetability of oncofetal CS expression in human NSCLC. High oncofetal CS expression is associated with shorter disease-free survival and poor overall survival of clinically annotated stage I and II NSCLC patients (n = 493). Oncofetal CS qualifies as an independent prognosticator of NSCLC in males and smokers, and high oncofetal CS levels are more prevalent in EGFR/KRAS wild-type cases, as compared to mutation cases. NSCLC cell lines express oncofetal CS-modified proteoglycans that can be specifically detected and targeted by rVAR2 proteins in a CSA-dependent manner. Importantly, a novel VAR2-drug conjugate (VDC-MMAE) efficiently eliminates NSCLC cells in vitro and in vivo. In summary, oncofetal CS is a prognostic biomarker and an actionable glycosaminoglycan target in NSCLC.

11.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359577

RESUMO

Clinically used topoisomerase II (TOP2) inhibitors are poison inhibitors that induce DNA damage to cause cancer cell death. However, they can also destroy benign cells and thereby show serious side effects, including cardiotoxicity and drug-induced secondary malignancy. New TOP2 inhibitors with a different mechanism of action (MOA), such as catalytic TOP2 inhibitors, are needed to more effectively control tumor growth. We have applied computer-aided drug design to develop a new group of small molecule inhibitors that are derivatives of our previously identified lead compound T60. Particularly, the compound T638 has shown improved solubility and microsomal stability. It is a catalytic TOP2 inhibitor that potently suppresses TOP2 activity. T638 has a novel MOA by which it binds TOP2 proteins and blocks TOP2-DNA interaction. T638 strongly inhibits cancer cell growth, but exhibits limited genotoxicity to cells. These results indicate that T638 is a promising drug candidate that warrants further development into clinically used anticancer drugs.

13.
Front Mol Biosci ; 8: 611367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869275

RESUMO

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.

14.
EMBO Mol Med ; 13(5): e13427, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33709547

RESUMO

Treatment-induced adaptive pathways converge to support androgen receptor (AR) reactivation and emergence of castration-resistant prostate cancer (PCa) after AR pathway inhibition (ARPI). We set out to explore poorly defined acute adaptive responses that orchestrate shifts in energy metabolism after ARPI and identified rapid changes in succinate dehydrogenase (SDH), a TCA cycle enzyme with well-known tumor suppressor activity. We show that AR directly regulates transcription of its catalytic subunits (SDHA, SDHB) via androgen response elements (AREs). ARPI acutely suppresses SDH activity, leading to accumulation of the oncometabolite, succinate. Succinate triggers calcium ions release from intracellular stores, which in turn phospho-activates the AR-cochaperone, Hsp27 via p-CaMKK2/p-AMPK/p-p38 axis to enhance AR protein stabilization and activity. Activation of this pathway was seen in tissue microarray analysis on prostatectomy tissues and patient-derived xenografts. This adaptive response is blocked by co-targeting AR with Hsp27 under both in vitro and in vivo studies, sensitizing PCa cells to ARPI treatments.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Receptores Androgênicos/genética , Ácido Succínico
15.
Prostate ; 81(6): 309-317, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503318

RESUMO

BACKGROUND: Castration resistant prostate cancer progression is associated with an acquired intratumoral androgen synthesis. Signaling pathways that can upregulate androgen production in prostate tumor microenvironment are not entirely known. In this study, we investigate the potential effect of a secreted signaling protein named semaphorin 3C (SEMA3C) on steroidogenic activities of prostatic stromal cells. METHODS: We treated human primary prostate stromal cells (PrSC) with 1uM recombinant SEMA3C protein and androgen precursor named dehydroepiandrosterone (DHEA) 1.7uM. Also, to test SEMA3C's effect on the conversion of DHEA to androgens, we exposed PrSCs to the conditioned media derived from LNCaP cells that were transduced with a lentiviral vector harboring full length SEMA3C gene or empty vector (CM-LNSEMA3C or CM-LNVector ). Then, liquid chromatography-mass spectrometry was performed on steroids isolated from PrSCs media. The messnger RNA expression of steroidogenic enzymes in PrSCs was quantified by quantitative polymerase chain reaction. RESULTS: Recombinant SEMA3C had no effect on steroidogenic activities in PrSCs. However, key steroidogenic enzymes expression and androgen synthesis were upregulated in PrSCs treated with CM-LNSEMA3C , compared to those treated with CM-LNVector . These results suggest that steroidogenic activities in PrSCs were upregulated in response to a signaling factor in CM-LNSEMA3C , other than SEMA3C. We hypothesized that SEMA3C overexpression in LNCaP cells affected androgen synthesis in PrSCs through sonic hedgehog (Shh) pathway activation in PrSCs. We verified this effect by blocking Shh signaling with smoothened antagonist. CONCLUSION: Based on known ability of Shh signaling pathway to activate steroidogenesis in stromal cells, we suggest that SEMA3C overexpression in LNCaP cells can upregulate Shh which in turn is able to stimulate steroidogenic activities in prostatic stromal cells.


Assuntos
Androgênios/biossíntese , Proteínas Hedgehog/metabolismo , Próstata/metabolismo , Semaforinas/metabolismo , Células Estromais/metabolismo , Desidroepiandrosterona/metabolismo , Humanos , Masculino , Comunicação Parácrina , Próstata/citologia , Semaforinas/genética , Regulação para Cima
16.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418978

RESUMO

The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC. Currently, there is very limited information available on human prostate tissue steroidogenesis. The purpose of the present study was to investigate steroid metabolism in human prostate cancer tissues with comparison between PZ and TZ. Human prostate cancer tumors were procured from the patients who underwent radical prostatectomy without any neoadjuvant therapy. Human prostate homogenates were used to quantify steroid levels intrinsically present in the tissues as well as formed after incubation with 2 µg/mL of 17-hydroxypregnenolone (17-OH-pregnenolone) or progesterone. A Waters Acquity ultraperformance liquid chromatography coupled to a Quattro Premier XE tandem quadrupole mass spectrometer using a C18 column was used to measure thirteen steroids from the classical and backdoor steroidogenesis pathways. The intrinsic prostate tissue steroid levels were similar between PZ and TZ with dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone and 17-OH-pregnenolone levels higher than the other steroids measured. Interestingly, 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one, and 5-pregnan-17-ol-3,20-dione formation was significantly higher in both the zones of prostate tissues, whereas, androstenedione, testosterone, DHT, and progesterone levels were significantly lower after 60 min incubation compared to the 0 min control incubations. The incubations with progesterone had a similar outcome with 5-pregnan-3,20-dione and 5-pregnan-3-ol-20-one levels were elevated and the levels of DHT were lower in both PZ and TZ tissues. The net changes in steroid formation after the incubation were more observable with 17-OH-pregnenolone than with progesterone. In our knowledge, this is the first report of comprehensive analyses of intrinsic prostate tissue steroids and precursor-driven steroid metabolism using a sensitive liquid chromatography-mass spectrometry assay. In summary, the PZ and TZ of human prostate exhibited similar steroidogenic ability with distinction in the manner each zone utilizes the steroid precursors to divert the activity towards backdoor pathway through a complex matrix of steroidogenic mechanisms.


Assuntos
Neoplasias da Próstata/patologia , Esteroides/metabolismo , Androstenodiona/análise , Androsterona/análise , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Espectrometria de Massas , Progesterona/análogos & derivados , Progesterona/análise , Progesterona/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Esteroides/análise , Esteroides/química , Testosterona/análise
17.
Urol Oncol ; 39(3): 194.e1-194.e7, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33250343

RESUMO

BACKGROUND: Intravesical instillation of chemo- or immunotherapy is commonly used in bladder cancer. Upper tract urothelial carcinoma (UTUC) shares similar pathological features, but current formulations are not suitable for direct instillation to the upper urinary tract. OBJECTIVE: To evaluate in vivo applicability, characteristics and toxicity of ST-UC, a mucoadhesive polymeric paste formulation of gemcitabine, for upper urinary tract instillation. MATERIAL AND METHODS: Three pigs received 10 ml of ST-UC (100 mg/ml gemcitabine) retrogradely into 1 renal pelvis for pharmacokinetic studies. Four days later, a second injection into the contralateral renal pelvis was followed by serial euthanasia of the pigs and nephroureterectomy after 1, 3, and 6 hours. Adverse effects were monitored. Urine, serum, and tissue gemcitabine concentrations were measured, along with histologic examination of the upper urinary tract. RESULTS: Retrograde instillation of ST-UC was well tolerated with mild, completely receding hydronephrosis. Urine gemcitabine concentrations were highest in the first 3-hour collection interval. Hundred percent of gemcitabine was recovered in the urine within 24 hours. Serum peak concentrations (cmax) of gemcitabine were low at 5.5 µg/ml compared to the 10 to 30 µg/ml levels observed after a single intravenous dose of 1,000 mg/m2 gemcitabine. The formulation was still traceable after one hour and gemcitabine tissue concentrations are supportive of this extended drug exposure. No major histopathological changes were observed. The main limitation of this study is the lack of antitumor activity data. CONCLUSION: This preclinical evaluation of ST-UC demonstrated feasible instillation in the renal pelvis, no significant safety concerns, and sustained release of gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Carcinoma de Células de Transição/tratamento farmacológico , Desoxicitidina/análogos & derivados , Composição de Medicamentos , Neoplasias Renais/tratamento farmacológico , Pelve Renal , Neoplasias Ureterais/tratamento farmacológico , Administração Tópica , Animais , Desoxicitidina/administração & dosagem , Feminino , Humanos , Polímeros , Suínos , Gencitabina
18.
J Inflamm Res ; 13: 969-983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262633

RESUMO

BACKGROUND: Membranous nephropathy (MN) is a specific entity of glomerulonephritis, and its glomerular inflammation is characterized by the deposition of immune complexes in the glomerular basement membrane and proteinuria. However, the molecular mechanisms underlying the glomerular inflammation of MN are not fully understood. This study was designed to investigate the role of clusterin (CLU) in the development of MN using a mouse model of cationic bovine serum albumin (cBSA)-induced MN. METHODS: Both wild-type C57BL/6j (WT) and CLU-knockout C57BL/6j (CLU-KO) mice were immunized with cBSA. The kidney function was determined by the levels of serum creatinine (SCr), blood urea nitrogen (BUN) and urinary protein. MN and glomerular deposits of CLU, complement C3 and immunoglobulins (Igs) were determined by histological analyses. Serum proteins were analyzed by the enzyme-linked immunosorbent assay, Western blot and liquid chromatography-mass spectrometry. RESULTS: Here, we showed that after cBSA immunization, SCr and proteinuria were increased in CLU-KO mice but not in WT mice. Similarly, severe glomerular atrophy and mesangial expansion along with C3 deposit were only found in the kidneys of CLU-KO mice but not in WT mice. However, there were no differences of serum IgG and complement 3 levels between CLU-KO and WT mice. In the serum of WT mice, CLU bound to anti-cBSA IgG, complements (eg, C8), proteinase/protease inhibitors and antioxidative proteins to form a complex, and incubation with WT serum reduced the complement-dependent lysis of podocytes in cultures. CONCLUSION: Our data suggest that a CLU deficiency induces cBSA-initiated glomerular inflammation of MN in a disease-resistant strain of mice, suggesting an anti-glomerular inflammatory function of CLU in the resistance to MN development. This function may be at least in part due to the formation of CLU-anti-cBSA Igs complex that prevents glomerular inflammation or injury in the disease-resistant mice.

19.
Nucleic Acids Res ; 48(12): 6855-6873, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32406909

RESUMO

Cells limit energy-consuming mRNA translation during stress to maintain metabolic homeostasis. Sequestration of mRNAs by RNA binding proteins (RBPs) into RNA granules reduces their translation, but it remains unclear whether RBPs also function in partitioning of specific transcripts to polysomes (PSs) to guide selective translation and stress adaptation in cancer. To study transcript partitioning under cell stress, we catalogued mRNAs enriched in prostate carcinoma PC-3 cell PSs, as defined by polysome fractionation and RNA sequencing (RNAseq), and compared them to mRNAs complexed with the known SG-nucleator protein, G3BP1, as defined by spatially-restricted enzymatic tagging and RNAseq. By comparing these compartments before and after short-term arsenite-induced oxidative stress, we identified three major categories of transcripts, namely those that were G3BP1-associated and PS-depleted, G3BP1-dissociated and PS-enriched, and G3BP1-associated but also PS-enriched. Oxidative stress profoundly altered the partitioning of transcripts between these compartments. Under arsenite stress, G3BP1-associated and PS-depleted transcripts correlated with reduced expression of encoded mitochondrial proteins, PS-enriched transcripts that disassociated from G3BP1 encoded cell cycle and cytoprotective proteins whose expression increased, while transcripts that were both G3BP1-associated and PS-enriched encoded proteins involved in diverse stress response pathways. Therefore, G3BP1 guides transcript partitioning to reprogram mRNA translation and support stress adaptation.


Assuntos
DNA Helicases/genética , Estresse Oxidativo/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/genética , Arsenitos/toxicidade , Carcinoma/genética , Carcinoma/metabolismo , Grânulos Citoplasmáticos/genética , Metabolismo Energético/genética , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/genética
20.
Prostate Cancer Prostatic Dis ; 23(2): 324-332, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767941

RESUMO

OBJECTIVE: Focal therapy has emerged as a treatment option for low- to intermediate-risk localized prostate cancer (PCa) patients, to balance the risks for urinary and sexual morbidity of radical treatment with the psychological burden of active surveillance. In this context, we developed ST-4PC, an injectable, polymeric paste formulation containing docetaxel (dtx) and bicalutamide (bic) for image-guided focal therapy of PCa. The objective of this work was to evaluate the in vitro characteristics and in vivo toxicity and efficacy of ST-4PC. MATERIAL AND METHODS: In vitro drug release was evaluated using high-performance liquid chromatography. In vivo toxicity of blank- and drug-loaded ST-4PC was assessed in mice and rats. Tumor growth inhibition was evaluated in LNCaP subcutaneous (s.c.) and LNCaP-luc orthotopic xenograft models. Using the s.c. model, mice were monitored weekly for weight loss, tumor volume (TV) and serum PSA. For the orthotopic model, mice were additionally monitored for bioluminescence as measure of tumor growth. RESULTS: ST-4PC demonstrated a sustained and steady release of incorporated drugs with 50% dtx and 20% bic being released after 14 days. While no systemic toxicity was observed, dose-dependent local side effects from dtx developed in the s.c. but not in the orthotopic model, illustrating the limitations of s.c. models for evaluating local cytotoxic therapy. In the s.c. model, 0.1%/4% and 0.25%/4% dtx/bic ST-4PC paste significantly reduced PSA progression, but did not have a significant inhibitory effect on TV. ST-4PC loaded with 1%/4% dtx/bic significantly reduced TV, serum PSA, and bioluminescence in the orthotopic xenograft model. Compared with drugs dissolved in DMSO, ST-4PC significantly delayed tumor growth. CONCLUSION: Image-guided focal therapy using ST-4PC demonstrated promising inhibition of PSA progression and orthotopic tumor growth in vivo without significant toxicity, and warrants further clinical evaluation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Composição de Medicamentos/métodos , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Anilidas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptose , Proliferação de Células , Docetaxel/administração & dosagem , Humanos , Masculino , Camundongos , Nitrilas/administração & dosagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ratos , Distribuição Tecidual , Compostos de Tosil/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA