Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553447

RESUMO

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Assuntos
Galanina , Vibrissas , Animais , Humanos , Camundongos , Axônios/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrissas/fisiologia
2.
Semin Liver Dis ; 43(2): 149-162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156523

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Fibrose , Inflamação/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
Nat Commun ; 14(1): 3060, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244931

RESUMO

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Assuntos
Músculo Esquelético , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Morfogênese , Mioblastos/fisiologia
4.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
5.
EMBO Mol Med ; 14(12): e15809, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345711

RESUMO

Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.


Assuntos
Síndrome de Alagille , Feminino , Masculino , Animais , Camundongos , Síndrome de Alagille/complicações , Caracteres Sexuais , Retina , Fatores de Risco
6.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
7.
Acta Neuropathol ; 144(4): 651-676, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040521

RESUMO

Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Doença de Alzheimer/patologia , Humanos , Imageamento Tridimensional , Locus Cerúleo/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo
8.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290096

RESUMO

Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.

9.
Science ; 367(6482)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139519

RESUMO

The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.


Assuntos
Atlas como Assunto , Encéfalo/fisiologia , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Transcriptoma , Animais , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Especificidade da Espécie , Suínos
10.
Brain Struct Funct ; 224(6): 2061-2078, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31144035

RESUMO

Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer's disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Tronco Encefálico/metabolismo , Norepinefrina/metabolismo , Secretagoginas/metabolismo , Animais , Masculino , Mesencéfalo/metabolismo , Neurônios/metabolismo , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , Vertebrados/metabolismo
11.
Front Pharmacol ; 9: 1373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559663

RESUMO

The active ingredient of ecstasy, ±3,4-methylenedioxymethamphetamine (MDMA), in addition to its initial reinforcing effects, induces selective and non-selective brain damage. Evidences suggest that the hippocampus (HC), a central region for cognition, may be especially vulnerable to impairments on the long-run, nevertheless, transcription factors that may precede and regulate such chronic changes remained uninvestigated in this region. In the current study, we used gene-set enrichment analysis (GSEA) to reveal possible transcription factor candidates responsible for enhanced vulnerability of HC after MDMA administration. Dark Agouti rats were intraperitoneally injected with saline or 15 mg/kg MDMA. Three weeks later HC gene expression was measured by Illumina whole-genome beadarrays and GSEA was performed with MSigDB transcription factor sets. The number of significantly altered genes on the genome level (significance < 0.001) in up/downregulated sets was also counted. MDMA upregulated one, and downregulated 13 gene sets in the HC of rats, compared to controls, including Pax4, Pitx2, FoxJ2, FoxO1, Oct1, Sp3, AP3, FoxO4, and vitamin D receptor (VDR)-regulated sets (q-value <0.05). VDR-regulated set contained the second highest number of significantly altered genes, including among others, Camk2n2, Gria3, and Grin2a. Most identified transcription factors are implicated in the response to ischemia confirming that serious hypoxia/ischemia occurs in the HC after MDMA administration, which may contribute to the selective vulnerability of this brain region. Moreover, our results also raise the possibility that vitamin D supplementation, in addition to the commonly used antioxidants, could be a potential alternative method to attenuate MDMA-induced chronic hippocampal impairments.

12.
BMC Genomics ; 19(1): 580, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071829

RESUMO

BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used entactogenic drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions frequently described in otherwise healthy MDMA users. Meanwhile, in post-traumatic stress disorder (PTSD) patients seem to benefit from therapeutic application of the drug, where damage in hippocampal cue extinction may play a role. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the consequences of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the downregulation of CaMK II subunits, glutamate-, CB1 cannabinoid- and EphA4, EphA5, EphA6 receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated besides elevated levels of a CaMK II subunit and NMDA2B glutamate receptor. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation / synaptic reorganization in the frontal cortex 3 weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is proposed by downregulations of members in long-term potentiation pathway and synaptic plasticity emphasizing the particular vulnerability of this brain region and proposing a mechanism responsible for cognitive problems in healthy individuals. At the same time, these results underpin benefits of MDMA in PTSD, where the drug may help memory extinction.


Assuntos
Cognição/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Memória/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Animais , Lobo Frontal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Sinapses
13.
J Clin Invest ; 128(9): 3757-3768, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29893745

RESUMO

Pain signals are transmitted by multisynaptic glutamatergic pathways. Their first synapse between primary nociceptors and excitatory spinal interneurons gates the sensory load. In this pathway, glutamate release is orchestrated by Ca2+-sensor proteins, with N-terminal EF-hand Ca2+-binding protein 2 (NECAB2) being particular abundant. However, neither the importance of NECAB2+ neuronal contingents in dorsal root ganglia (DRGs) and spinal cord nor the function determination by NECAB2 has been defined. A combination of histochemical analyses and single-cell RNA-sequencing showed NECAB2 in small- and medium-sized C- and Aδ D-hair low-threshold mechanoreceptors in DRGs, as well as in protein kinase C γ excitatory spinal interneurons. NECAB2 was downregulated by peripheral nerve injury, leading to the hypothesis that NECAB2 loss of function could limit pain sensation. Indeed, Necab2-/- mice reached a pain-free state significantly faster after peripheral inflammation than did WT littermates. Genetic access to transiently activated neurons revealed that a mediodorsal cohort of NECAB2+ neurons mediates inflammatory pain in the mouse spinal dorsal horn. Here, besides dampening excitatory transmission in spinal interneurons, NECAB2 limited pronociceptive brain-derived neurotrophic factor (BDNF) release from sensory afferents. Hoxb8-dependent reinstatement of NECAB2 expression in Necab2-/- mice then demonstrated that spinal and DRG NECAB2 alone could control inflammation-induced sensory hypersensitivity. Overall, we identify NECAB2 as a critical component of pronociceptive pain signaling, whose inactivation offers substantial pain relief.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas do Olho/fisiologia , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Dor/etiologia , Dor/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Regulação para Baixo , Proteínas do Olho/genética , Feminino , Gânglios Espinais/fisiopatologia , Hiperalgesia/genética , Inflamação/fisiopatologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/fisiologia , Dor/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/fisiopatologia , Secretagoginas/deficiência , Secretagoginas/genética , Secretagoginas/metabolismo , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/fisiopatologia
14.
Proc Natl Acad Sci U S A ; 115(28): E6576-E6584, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941562

RESUMO

Violent aggression in humans may involve a modified response to stress, but the underlying mechanisms are not well understood. Here we show that naturally present autoantibodies reactive to adrenocorticotropic hormone (ACTH) exhibit distinct epitope-binding profiles to ACTH peptide in subjects with a history of violent aggression compared with controls. Namely, while nonaggressive male controls displayed a preferential IgG binding to the ACTH central part (amino acids 11-24), subjects who had committed violent acts of aggression had IgG with increased affinity to ACTH, preferentially binding to its N terminus (amino acids 1-13). Purified IgGs from approximately half of the examined sera were able to block ACTH-induced cortisol secretion of human adrenal cells in vitro, irrespective of the source of sample (from a control subject or a violent aggressor). Nevertheless, in the resident-intruder test in mice, i.p. injection of residents with ACTH and IgG from aggressive subjects, but not from control subjects, shortened latency for the first attack against intruders. Immunohistochemical screening of violent aggressors' sera on rat brain and pituitary sections did not show IgG binding to ACTH-producing cells, but 4 of 16 sera revealed selective binding to a nonidentified antigen in vasopressinergic neurons of the hypothalamic paraventricular and supraoptic nuclei. Thus, the data show that ACTH-reactive plasmatic IgGs exhibit differential epitope preference in control and violently aggressive subjects. These IgGs can modulate ACTH-induced cortisol secretion and, hence, are involved in the regulation of the stress response. However, the possible role of ACTH-reactive autoantibodies in aggressive behavior needs further investigation.


Assuntos
Hormônio Adrenocorticotrópico , Agressão , Autoanticorpos , Hidrocortisona , Imunoglobulina G , Estresse Psicológico , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/imunologia , Adulto , Autoanticorpos/sangue , Autoanticorpos/imunologia , Humanos , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Noruega , Estresse Psicológico/sangue , Estresse Psicológico/imunologia
15.
J Immunol ; 200(2): 775-787, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29222168

RESUMO

Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Seleção Clonal Mediada por Antígeno , Quinase I-kappa B/deficiência , Baço/imunologia , Baço/metabolismo , Fatores Etários , Animais , Antígenos T-Independentes/imunologia , Subpopulações de Linfócitos B/citologia , Biomarcadores , Diferenciação Celular , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunofenotipagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Fenótipo
17.
Neuropeptides ; 57: 65-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26891823

RESUMO

It is widely accepted that efficacy and speed of current antidepressants' therapeutic effect are far from optimal. Thus, there is a need for the development of antidepressants with new mechanisms of action. The neuropeptide galanin and its receptors (GalR1, GalR2 and GalR3) are among the promising targets. However, it is not clear whether or not the galanin system is involved in the antidepressant effect exerted by the currently much used inhibitors of the reuptake of serotonin and/or noradrenaline. To answer this question we administered the selective serotonin and noradrenaline reuptake inhibitor (SNRI) venlafaxine (40mg/kg/day via osmotic minipumps) to normal rats and examined the levels of the transcripts for galanin and GalR1-3 after a 3-week venlafaxine treatment in the dorsal raphe, hippocampus and frontal cortex. These areas are known to be involved in the effects of antidepressants and in depression itself. Venlafaxine failed to alter the expression of any of the galanin system genes in these areas. Our results show that one of the most efficient, currently used SNRIs does not alter transcript levels of galanin or its three receptors in normal rats. These findings suggest that the pro- and antidepressive-like effects of galanin reported in animal experiments may employ a novel mechanism(s).


Assuntos
Antidepressivos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Galanina/genética , Receptores de Galanina/genética , Inibidores da Recaptação de Serotonina e Norepinefrina/administração & dosagem , Cloridrato de Venlafaxina/administração & dosagem , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos
18.
Brain Struct Funct ; 221(7): 3521-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26462664

RESUMO

Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.


Assuntos
Nível de Alerta , Encéfalo/citologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Núcleo Hipotalâmico Anterior/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Galanina/metabolismo , Ácido Glutâmico/metabolismo , Locus Cerúleo/metabolismo , Masculino , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar , Receptores de Neuropeptídeos/metabolismo , Sono , Privação do Sono/metabolismo
19.
Neuropharmacology ; 101: 204-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26387439

RESUMO

Somatostatin regulates stress-related behavior and its expression is altered in mood disorders. However, little is known about the underlying mechanisms, especially about the importance of its receptors (sst1-sst5) in anxiety and depression-like behavior. Here we analyzed the potential role of sst4 receptor in these processes, since sst4 is present in stress-related brain regions, but there are no data about its functional relevance. Genetic deletion of sst4 (Sstr4(-/-)) and its pharmacological activation with the newly developed selective non-peptide agonist J-2156 were used. Anxiety was examined in the elevated plus maze (EPM) and depression-like behavior in the forced swim (FST) and tail suspension tests (TST). Neuronal activation during the TST was monitored by Fos immunohistochemistry, receptor expression was identified by sst4(LacZ) immunostaining in several brain regions. Sstr4(-/-) mice showed increased anxiety in the EPM and enhanced depression-like behavior in the FST. J-2156 (100 µg/kg i.p.) exhibited anxiolytic effect in the EPM and decreased immobility in the TST. J-2156 alone did not influence Fos immunoreactivity in intact mice, but significantly increased the stress-induced Fos response in the dorsal raphe nucleus, central projecting Edinger-Westphal nucleus, periaqueductal gray matter, the magnocellular, but not the parvocellular part of the hypothalamic paraventricular nucleus, lateral septum, bed nucleus of the stria terminalis and the amygdala. Notably, sst4(LacZ) immunoreactivity occurred in the central and basolateral amygdala. Together, these studies reveal that sst4 mediates anxiolytic and antidepressant-like effects by enhancing the stress-responsiveness of several brain regions with special emphasis on the amygdala.


Assuntos
Antidepressivos/uso terapêutico , Ansiedade/metabolismo , Butanos/uso terapêutico , Depressão/metabolismo , Naftalenos/uso terapêutico , Receptores de Somatostatina/metabolismo , Sulfonas/uso terapêutico , Análise de Variância , Animais , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butanos/farmacologia , Depressão/tratamento farmacológico , Depressão/genética , Depressão/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Elevação dos Membros Posteriores , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Naftalenos/farmacologia , Proteínas Oncogênicas v-fos/metabolismo , Receptores de Somatostatina/genética , Sulfonas/farmacologia , Natação/psicologia
20.
Front Neuroanat ; 9: 126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441556

RESUMO

Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS make the NPS-NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA